22 research outputs found

    Gas Phase Studies of Molecular Clusters Containing Metal Cations, and the Ion Mobility of Styrene Oligomers

    Get PDF
    This study is divided into three parts. Part I deals with the mechanism of the self-initiated polymerization (or thermal polymerization) of styrene in the gas phase. In this work, we present the first direct evidence for the thermally self-initiated polymerization of styrene in the gas phase. Our approach is based on on-line analysis of the gas phase Oligomers by mass-selected ion mobility. The mobility measurements provide structural information on the ionized oligomers based on their collision cross-sections (Ω) which depend on the geometric shapes of the ions. Theoretical calculations of possible structural candidates of the Oligomers ions are then used to compute angle averaged Ω for comparison with the measured ones. The agreement between the measured and calculated Ω of the candidate structures provides reliable assignments to the structures of the oligomers. Furthermore, collisional-induced dissociations of the mass-selected oligomer ions provide further support for the structures obtained from the mobility measurements. Our results indicate that the gas phase polymerization of styrene proceeds via essentially the same initiation mechanism (the Mayo mechanism) as in condensed phase polymerization. The structural evidence, the mechanism of formation and the observed fragmentation pathway of the growing dimers and trimers in the gas phase are presentedIn Part II the solvation of a variety of metal cations by benzene clusters have been studied using laser vaporization, cluster beam and time-of-flight mass spectrometry techniques. In this work strong magic numbers were observed for clusters containing 10, 13 and 14 benzene molecules depending on the nature of the metal cation involved. The metal cations exhibiting preference solvation by 14 benzene molecules show a strong tendency to form sandwich structures with two benzene molecules. The interpretation of these results in view of the proposed structures and the growth patterns of the clusters are presented. In Part III, the work is focused on the investigation of the intracluster ion molecule reactions following the generation of Mg+ within the polar clusters (water, methanol, ether and acetonitrile)

    Intracluster Ion Molecule Reactions Following the Generation of Mg+ Within Polar Clusters

    Get PDF
    In this work we investigated the intracluster ion molecule reactions following the generation of Mg+ within the polar clusters (water, methanol, ether and acetonitrile), using time of flight mass spectrometry. In the case of Mg+/water and Mg+/methanol, dehydrogenation reactions are observed after the addition of five molecules. However, no dehydrogenation reactions are observed in the case of Mg+/ether or Mg+/acetonitrile clusters. This confirms the role of the H atom in (O–H) in the dehydrogenation reaction, and rules out any contribution from the H atom in the CH3 group. In addition, the magic numbers in the time of flight (TOF) mass spectra of the Mg+Xn clusters (X = H2O, CH3OH, CH3OCH3 and CH3CN) have been investigated. Finally, the role of ground electronic magnesium ion Mg+(2S1/2), and excited electronic magnesium ion Mg+(2P1/2) in the dehydrogenation reaction were investigated using Ion Mobility Mass spectrometry. The results offer direct evidence confirming the absence of the electronically excited, Mg+(2P1/2)

    Microwave irradiation synthesis and characterization of reduced-(graphene oxide-(polystyrene-polymethyl methacrylate))/silver nanoparticle nanocomposites and their anti-microbial activity.

    Get PDF
    Herein, we report a facile process for the preparation of styrene and methyl-methacrylate copolymer nanocomposites containing reduced graphene oxide and silver nanoparticles ((R-(GO-(PS-PMMA))/AgNPs)) by using (i) microwave irradiation (MWI) to obtain R-(GO-(PSPMMA))/AgNPs and (ii) the in situ bulk polymerization technique to produce RGO/AgNPs-(PSPMMA). Various characterization techniques, including FT-IR, XPS, Raman spectroscopy, XRD, SEM, HR-TEM, DSC, and TGA analysis, were used to characterize the prepared nanocomposites. The Berkovich nanoindentation method was employed to determine the hardness and elastic modulus of the nanocomposites. The results showed that the MWI-produced nanocomposites were found to have enhanced morphological, structural, and thermal properties compared with those of the nanocomposites prepared by the in situ method. In addition, the antibacterial activity of the prepared nanocomposites against the E. coli HB 101 K-12 was investigated, whereby an inhibition zone of 3 mm (RGO/AgNPs-(PS-PMMA) and 27 mm (R-(GO-(PS-PMMA))/AgNPs) was achieved. This indicates that the MWI-prepared nanocomposite has stronger antibacterial activity than the in situ-prepared nanocomposite

    Microwave Irradiation Effect on the Dispersion and Thermal Stability of RGO Nanosheets within a Polystyrene Matrix

    No full text
    Polystyrene-reduced graphene oxide (PSTY/RGO) composites were prepared via the in situ bulk polymerization method using two different preparation techniques. The general approach is to use microwave irradiation (MWI) to enhance the exfoliation and the dispersion of RGO nanosheets within the PSTY matrix. In the first approach, a mixture of GO and styrene monomers (STY) were polymerized using a bulk polymerization method facilitated by microwave irradiation (MWI) to obtain R-(GO-PSTY) composites. In the second approach, a mixture of RGO and STY monomers were polymerized using a bulk polymerization method to obtain RGO-(PSTY) composites. The two composites were characterized by FTIR, 1H-NMR, XRD, SEM, HRTEM, TGA and DSC. The results indicate that the composite obtained using the first approach, which involved MWI, had a better morphology and dispersion with enhanced thermal stability, compared with the composites prepared without MWI. Moreover, DSC results showed that the Tg value of the composites after loading the RGO significantly increased by 24.6 °C compared to the neat polystyrene

    Polystyrene-Poly(methyl methacrylate) Silver Nanocomposites: Significant Modification of the Thermal and Electrical Properties by Microwave Irradiation

    No full text
    This work compares the preparation of nanocomposites of polystyrene (PS), poly(methyl methacrylate) (PMMA), and PSMMA co-polymer containing silver nanoparticles (AgNPs) using in situ bulk polymerization with and without microwave irradiation (MWI). The AgNPs prepared were embedded within the polymer matrix. A modification in the thermal stability of the PS/Ag, PMMA/Ag, and PSMMA/Ag nanocomposites using MWI and in situ was observed compared with that of neat PSMMA, PS, and PMMA. In particular, PS/Ag, and PSMMA/Ag nanocomposites used in situ showed better thermal stability than MWI, while PMMA/Ag nanocomposites showed improved thermal stability. The electrical conductivity of the PS/Ag, PMMA/Ag, and PSMMA/Ag composites prepared by MWI revealed a percolation behavior when 20% AgNPs were used as a filler, and the conductivity of the nanocomposites increased to 103 S/cm, 33 S/cm, and 40 mS/cm, respectively. This enhancement might be due to the good dispersion of the AgNPs within the polymer matrix, which increased the interfacial interaction between the polymer and AgNPs. The polymer/Ag nanocomposites developed with tunable thermal and electrical properties could be used as conductive materials for electronic device applications

    Novel Synthesis of Holey Reduced Graphene Oxide/Polystyrene (HRGO/PS) Nanocomposites by Microwave Irradiation as Anodes for High-Temperature Lithium-Ion Batteries

    No full text
    To overcome the risk of exothermic lithium-ion battery overheating reactions, we fabricated a novel, high-temperature-stable anode material composed of holey reduced graphene oxide/polystyrene (HRGO/PS) nanocomposites synthesized through in situ bulk polymerization in the presence of HRGO via microwave irradiation. The HRGO/PS nanocomposites were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, and electron microscopy analyses including field-emission scanning electron microscopy and transmission electron microscopy. All characterization studies demonstrated homogenous dispersion of HRGO in the PS matrix, which enhanced the thermal and electrical properties of the overall nanocomposites. These novel HRGO/PS nanocomposites exhibited excellent electrochemical responses, with reversible charge/discharge capacities of 92.1/92.78 mA·h/g at a current density of 500 mA/g with ~100% capacity retention and ~100% coulombic efficiency at room temperature. Furthermore, an examination of the electrochemical properties of these nanocomposites at 110 °C showed that HRGO/PS nanocomposites still displayed good charge/discharge capacities with stable cycle performances for 150 cycles

    PEG Coated Fe3O4/RGO Nano-Cube-Like Structures for Cancer Therapy via Magnetic Hyperthermia

    No full text
    Superparamagnetic iron oxide nanoparticles (SPIONs) have high saturation magnetization and are promising candidates for hyperthermia. They may act as magnetic heating agents when subjected to magnetic field in nano-based hyperthermia. In this work, cube-like Fe3O4 nanoparticles (labelled as cubic SPIONs) with reduced graphene oxide (RGO) nanocomposites were prepared by a microwave hydrothermal method. The shape and size of magnetic nanoparticles were controlled by varying synthesis parameters, including reaction time, pressure and microwave power. This study successfully synthesized cubic SPIONs nanocomposites with an average particle size between 24–34 nm. Poly-(ethylene) glycol (PEG) was used as a coating material on SPIONs to enhance biocompatibility. The RGO sheets provided a high surface area-to-volume ratio for SPIONs to be dispersed on their surface, and hence, they prevented aggregation of the SPIONs in the nanocomposites. Magnetically induced heating studies on the optimized nanocomposite (Fe3O4/RGO/PEG) demonstrated heating capabilities for magnetic hyperthermia application with a promising specific absorption rate (SAR) value of 58.33 W/g in acidic solution. Cytotoxicity tests were also performed to ensure low nanoparticle toxicity before incorporation into the human body. The results of the standard assay for the toxicity determination of the nanocomposites revealed over 70% cell survival after 48 h, suggesting the feasibility of using the synthesized nanocomposites for magnetic hyperthermia
    corecore