174 research outputs found

    Autophagy orchestrates the crosstalk between cells and organs

    Get PDF
    Over the recent years, it has become apparent that a deeper understanding of cell-to-cell and organ-to-organ communication is necessary to fully comprehend both homeostatic and pathological states. Autophagy is indispensable for cellular development, function, and homeostasis. A crucial aspect is that autophagy can also mediate these processes through its secretory role. The autophagy-derived secretome relays its extracellular signals in the form of nutrients, proteins, mitochondria, and extracellular vesicles. These crosstalk mediators functionally shape cell fate decisions, tissue microenvironment and systemic physiology. The diversity of the secreted cargo elicits an equally diverse type of responses, which span over metabolic, inflammatory, and structural adaptations in disease and homeostasis. We review here the emerging role of the autophagy-derived secretome in the communication between different cell types and organs and discuss the mechanisms involved

    The central role of DNA damage in immunosenescence

    Get PDF
    Ageing is the biggest risk factor for the development of multiple chronic diseases as well as increased infection susceptibility and severity of diseases such as influenza and COVID-19. This increased disease risk is linked to changes in immune function during ageing termed immunosenescence. Age-related loss of immune function, particularly in adaptive responses against pathogens and immunosurveillance against cancer, is accompanied by a paradoxical gain of function of some aspects of immunity such as elevated inflammation and increased incidence of autoimmunity. Of the many factors that contribute to immunosenescence, DNA damage is emerging as a key candidate. In this review, we discuss the evidence supporting the hypothesis that DNA damage may be a central driver of immunosenescence through senescence of both immune cells and cells of non-haematopoietic lineages. We explore why DNA damage accumulates during ageing in a major cell type, T cells, and how this may drive age-related immune dysfunction. We further propose that existing immunosenescence interventions may act, at least in part, by mitigating DNA damage and restoring DNA repair processes (which we term “genoprotection”). As such, we propose additional treatments on the basis of their evidence for genoprotection, and further suggest that this approach may provide a viable therapeutic strategy for improving immunity in older people

    The miR-17~92 Cluster: A Key Player in the Control of Inflammation during Rheumatoid Arthritis.:

    Get PDF
    MicroRNAs (miRNAs) are now recognized as essential regulators of gene expression in plants and animals. They potentially modulate the expression of multiple genes thereby enabling homeostatic settings in physiological conditions. Their role is also increasingly considered in many diseases in which deregulated epigenetic mechanisms induce aberrant gene expression. Work conducted in our laboratory has recently led to the identification of miRNAs essential for the control of inflammatory reactions that occur during rheumatoid arthritis (RA). In this review, we describe two such miRNAs, members of the miR-17 ∼ 92 cluster, which has been previously implicated in cancer. Based on our data and on predicted miRNA:mRNA interactions, we will extrapolate a model whereby the miR-17 ∼ 92 cluster appears as a global regulator of the Apoptosis Signal-Regulating Kinase 1 signalosome, a central actor in the inflammatory pathways activated during RA. We will also discuss the potential therapeutic outcomes emerging from this model

    Autophagy preserves hematopoietic stem cells by restraining MTORC1-mediated cellular anabolism

    Get PDF
    Adult stem cells are long-lived and quiescent with unique metabolic requirements. Macroautophagy/autophagy is a fundamental survival mechanism that allows cells to adapt to metabolic changes by degrading and recycling intracellular components. Here we address why autophagy depletion leads to a drastic loss of the stem cell compartment. Using inducible deletion of autophagy specifically in adult hematopoietic stem cells (HSCs) and in mice chimeric for autophagy-deficient and normal HSCs, we demonstrate that the stem cell loss is cell-intrinsic. Mechanistically, autophagy-deficient HSCs showed higher expression of several amino acid transporters (AAT) when compared to autophagy-competent cells, resulting in increased amino acid (AA) uptake. This was followed by sustained MTOR (mechanistic target of rapamycin) activation, with enlarged cell size, glucose uptake and translation, which is detrimental to the quiescent HSCs. MTOR inhibition by rapamycin treatment in vivo was able to rescue autophagy-deficient HSC loss and bone marrow failure and resulted in better reconstitution after transplantation. Our results suggest that targeting MTOR may improve aged stem cell function, promote reprogramming and stem cell transplantation

    miR-346 controls release of TNF-alpha protein and stability of its mRNA in rheumatoid arthritis via tristetraprolin stabilization

    Get PDF
    TNF-alpha is a major cytokine implicated in rheumatoid arthritis. Its expression is regulated both at the transcriptional and posttranscriptional levels and recent data demonstrated that miRNAs are implicated in TNF-alpha response in macrophages. LPS-activated FLS isolated from RA patients express TNF-alpha mRNA but not the mature protein. This prompted us to look for miRNAs which could be implicated in this anti-inflammatory effect. Using a microarray, we found two miRNAs, miR-125b and miR-939 predicted to target the 3'-UTR of TNF-alpha mRNA, to be up-regulated in RA FLS in response to LPS, but their repression did not restore mature TNF-alpha expression in FLS. We showed previously that miR-346, which is upregulated in LPS-activated FLS, inhibited Btk expression that stabilized TNF-alpha mRNA. Blocking miR-346 reestablished TNF-alpha expression in activated FLS. Interestingly, transfection of miR-346 in LPS-activated THP-1 cells inhibited TNF-alpha secretion. We also demonstrated that TTP, a RNA binding protein which inhibited TNF-alpha synthesis, is overexpressed in activated FLS and that inhibition of miR-346 decreases its expression. Conversely, transfection of miR-346 in LPS-activated THP-1 cells increased TTP mRNA expression and inhibited TNF-alpha release. These results indicate that miR-346 controls TNF-alpha synthesis by regulating TTP expression

    Bidirectional lipid droplet velocities are controlled by differential binding strengths of HCV Core DII protein

    Get PDF
    Host cell lipid droplets (LD) are essential in the hepatitis C virus (HCV) life cycle and are targeted by the viral capsid core protein. Core-coated LDs accumulate in the perinuclear region and facilitate viral particle assembly, but it is unclear how mobility of these LDs is directed by core. Herein we used two-photon fluorescence, differential interference contrast imaging, and coherent anti-Stokes Raman scattering microscopies, to reveal novel core-mediated changes to LD dynamics. Expression of core protein’s lipid binding domain II (DII-core) induced slower LD speeds, but did not affect directionality of movement on microtubules. Modulating the LD binding strength of DII-core further impacted LD mobility, revealing the temporal effects of LD-bound DII-core. These results for DII-core coated LDs support a model for core-mediated LD localization that involves core slowing down the rate of movement of LDs until localization at the perinuclear region is accomplished where LD movement ceases. The guided localization of LDs by HCV core protein not only is essential to the viral life cycle but also poses an interesting target for the development of antiviral strategies against HCV

    Autophagy in T cells from aged donors is maintained by spermidine and correlates with function and vaccine responses

    Get PDF
    Vaccines are powerful tools to develop immune memory to infectious diseases and prevent excess mortality. In older adults, however vaccines are generally less efficacious and the molecular mechanisms that underpin this remain largely unknown. Autophagy, a process known to prevent aging, is critical for the maintenance of immune memory in mice. Here, we show that autophagy is specifically induced in vaccine-induced antigen-specific CD8+ T cells in healthy human volunteers. In addition, reduced IFNγ secretion by RSV-induced T cells in older vaccinees correlates with low autophagy levels. We demonstrate that levels of the endogenous autophagy-inducing metabolite spermidine fall in human T cells with age. Spermidine supplementation in T cells from old donors recovers their autophagy level and function, similar to young donors' cells, in which spermidine biosynthesis has been inhibited. Finally, our data show that endogenous spermidine maintains autophagy via the translation factor eIF5A and transcription factor TFEB. In summary, we have provided evidence for the importance of autophagy in vaccine immunogenicity in older humans and uncovered two novel drug targets that may increase vaccination efficiency in the aging context

    Polyamines control eIF5A hypusination, TFEB translation, and autophagy to reverse B cell senescence

    Get PDF
    Failure to make adaptive immune responses is a hallmark of aging. Reduced B cell function leads to poor vaccination efficacy and a high prevalence of infections in the elderly. Here we show that reduced autophagy is a central molecular mechanism underlying immune senescence. Autophagy levels are specifically reduced in mature lymphocytes, leading to compromised memory B cell responses in old individuals. Spermidine, an endogenous polyamine metabolite, induces autophagy in vivo and rejuvenates memory B cell responses. Mechanistically, spermidine post-translationally modifies the translation factor eIF5A, which is essential for the synthesis of the autophagy transcription factor TFEB. Spermidine is depleted in the elderly, leading to reduced TFEB expression and autophagy. Spermidine supplementation restored this pathway and improved the responses of old human B cells. Taken together, our results reveal an unexpected autophagy regulatory mechanism mediated by eIF5A at the translational level, which can be harnessed to reverse immune senescence in humans

    Homozygosity for the V377I mutation in mevalonate kinase causes distinct clinical phenotypes in two sibs with hyperimmunoglobulinaemia D and periodic fever syndrome (HIDS).

    Get PDF
    OBJECTIVE: Mevalonate kinase (MVK) deficiency is a rare autosomal recessive auto-inflammatory disorder characterised by recurring episodes of fever associated with multiple non-specific inflammatory symptoms and caused by mutations in the MVK gene. The phenotypic spectrum is wide and depends mostly on the nature of the mutations. Hyperimmunoglobulinaemia D and periodic fever syndrome (HIDS) is a relatively mild presentation and predominantly associated with a c.1129G>A (p.V377I) mutation in the MVK gene. We report cases of two sisters homozygous for this mutation but exhibiting distinct (symptomatic vs asymptomatic) phenotypes. METHODS: Patient history was obtained; physical and clinical examination and laboratory tests were performed; lipopolysaccharide (LPS) response of peripheral blood mononuclear cells was quantified. RESULTS: Low MVK enzymatic activity is not necessarily associated with inflammatory symptoms. Increased inflammatory cytokine secretion in response to LPS is associated with symptomatic MVK deficiency. CONCLUSIONS: Individuals who are homozygous for the common p.V377I mutation in the MVK gene may not display the characteristic inflammatory episodes diagnostic of MKD and thus may be lost for correct and timely diagnosis.journal article20162016 03 07importedThis work was funded by the Laboratoire d'Excellence (LABEX) TRANSPLANEX [ANR-11-LABX-0070_TRANSPLANTEX]. Additional support was received from the Institut national de la santé et de la recherche médicale (INSERM), the University of Strasbourg (UNISTRA) and the Institut Universitaire de France (IUF)
    corecore