32 research outputs found

    Proteomics analysis of chronic lymphocytic leukaemia cells

    Get PDF
    CLL is a malignant disease of B-cells characterised by a heterogeneous clinical outcome. Some patients require an early treatment and have low survival time, while others never need treatment. Many prognostic markers have been established and used to help predict the clinical course of CLL. Despite advances in understanding the biology of CLL, the molecular differences underlying the variable clinical outcome of CLL are not yet fully understood. The hypothesis of this study was that the heterogeneous outcome of CLL could be driven, in part, by the aberrant expression of proteins in the two forms of CLL. Therefore, this study aimed to identify these proteins using proteomics approaches. In an attempt to achieve this goal, four steps were performed. Firstly, a cellular fractionation method was developed to extract cellular proteins into two different fractions (NP40 fraction for cytosolic protein enrichment and SDS fraction for nuclear protein enrichment). Secondly, extracted proteins were subjected to qualitative proteomics analysis using 2D nano-LC and MALDI TOF-TOF mass spectrometry in order to identify CLL proteins. Integrating the identified proteins (n=900) with previously published transcriptome of CLL cells and normal B-cells highlighted 20 proteins with preferential expression in CLL cells - some of which were linked to human cancer. Thirdly, iTRAQ technology coupled with 2D nano-LC and MALDI TOFTOF mass spectrometry was used to measure the relative expression of proteins in different CLL samples. This workflow identified 15 altered proteins in the two forms of CLL and detected 14 proteins with variable expression. Finally, six proteins were selected for investigation in an additional CLL cohort. Of these proteins thyroid hormone receptor-associated protein 3 (TR150), T-cell leukaemia/lymphoma protein 1A (TCL-1) and S100A8 showed association with poor prognosis CLL and early requirement for treatment. Additionally, myosin-9 exhibited reduced expression in poor prognosis CLL samples.! ! Overall, this study identified proteins with potential importance in CLL prognosis and pathology. These proteins merit investigation in a larger CLL cohort to further confirm their relevance to CLL. In addition, this study showed the usefulness of combining cellular fractionation with proteomics and transcriptomics to identify proteins with potential role in CLL

    Monomeric C-Reactive Protein Localized in the Cerebral Tissue of Damaged Vascular Brain Regions Is Associated With Neuro-Inflammation and Neurodegeneration-An Immunohistochemical Study

    Get PDF
    Monomeric C-reactive protein (mCRP) is now accepted as having a key role in modulating inflammation and in particular, has been strongly associated with atherosclerotic arterial plaque progression and instability and neuroinflammation after stroke where a build-up of the mCRP protein within the brain parenchyma appears to be connected to vascular damage, neurodegenerative pathophysiology and possibly Alzheimer's Disease (AD) and dementia. Here, using immunohistochemical analysis, we wanted to confirm mCRP localization and overall distribution within a cohort of AD patients showing evidence of previous infarction and then focus on its co-localization with inflammatory active regions in order to provide further evidence of its functional and direct impact. We showed that mCRP was particularly seen in large amounts within brain vessels of all sizes and that the immediate micro-environment surrounding these had become laden with mCRP positive cells and extra cellular matrix. This suggested possible leakage and transport into the local tissue. The mCRP-positive regions were almost always associated with neurodegenerative, damaged tissue as hallmarked by co-positivity with pTau and ÎČ-amyloid staining. Where this occurred, cells with the morphology of neurons, macrophages and glia, as well as smaller microvessels became mCRP-positive in regions staining for the inflammatory markers CD68 (macrophage), interleukin-1 beta (IL-1ÎČ) and nuclear factor kappa B (NFÎșB), showing evidence of a perpetuation of inflammation. Positive staining for mCRP was seen even in distant hypothalamic regions. In conclusion, brain injury or inflammatory neurodegenerative processes are strongly associated with mCRP localization within the tissue and given our knowledge of its biological properties, it is likely that this protein plays a direct role in promoting tissue damage and supporting progression of AD after injury.The authors extend their appreciations to the deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number (lFP-2020-36). The authors would also like to thank Deanship of Scientific Research at Majmaah University, Al Majmaah-11952, Saudi Arabia for supporting this work. This work was supported from a grant from the Competitiveness Operational programme 2014–2020: C-reactive protein therapy for stroke-associated dementia: ID_P_37_674, My SMIS code:103432 contract 51/05.09.2016

    Early prediction keys for COVID-19 cases progression: A meta-analysis.

    Get PDF
    Backgroundː Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), within few months of being declared as a global pandemic by WHO, the number of confirmed cases has been over 75 million and over 1.6 million deaths since the start of the Pandemic and still counting, there is no consensus on factors that predict COVID-19 case progression despite the diversity of studies that reported sporadic laboratory predictive values predicting severe progression. We review different biomarkers to systematically analyzed these values to evaluate whether are they are correlated with the severity of COVID-19 disease and so their ability to be a predictor for progression. Methods: The current meta-analysis was carried out to identify relevant articles using eight different databases regarding the values of biomarkers and risk factors of significance that predict progression of mild or moderate cases into severe and critical cases. We defined the eligibility criteria using a PICO model. Results: Twenty-two relevant articles were selected for meta-analysis the following biomarkers C-reactive protein, interleukin-6, LDH, neutrophil, %PD-1 expression, D-dimer, creatinine, AST and Cortisol all recorded high cut-off values linked to severe and critical cases while low lymphocyte count, and low Albumin level were recorded. Also, we meta- analyzed age and comorbidities as a risk factors of progression as hypertension, Diabetes and chronic obstructive lung diseases which significantly correlated with cases progression (p < 0.05). Conclusionsː The current meta-analysis is the first step for analysing and getting cut-off references values of significance for prediction COVID-19 case progression. More studies are needed on patients infected with SARS-CoV-2 and on a larger scale to establish clearer threshold values that predict progression from mild to severe cases. In addition, more biomarkers testing also help in building a scoring system for the prediction and guiding for proper timely treatment

    Mucormycosis co-infection in COVID-19 patients: An update

    Get PDF
    Mucormycosis (MCM) is a rare fungal disorder that has recently been increased in parallel with novel COVID-19 infection. MCM with COVID-19 is extremely lethal, particularly in immunocompromised individuals. The collection of available scientific information helps in the management of this co-infection, but still, the main question on COVID-19, whether it is occasional, participatory, concurrent, or coincidental needs to be addressed. Several case reports of these co-infections have been explained as causal associations, but the direct contribution in immunocompromised individuals remains to be explored completely. This review aims to provide an update that serves as a guide for the diagnosis and treatment of MCM patients’ co-infection with COVID-19. The initial report has suggested that COVID-19 patients might be susceptible to developing invasive fungal infections by different species, including MCM as a co-infection. In spite of this, co-infection has been explored only in severe cases with common triangles: diabetes, diabetes ketoacidosis, and corticosteroids. Pathogenic mechanisms in the aggressiveness of MCM infection involves the reduction of phagocytic activity, attainable quantities of ferritin attributed with transferrin in diabetic ketoacidosis, and fungal heme oxygenase, which enhances iron absorption for its metabolism. Therefore, severe COVID-19 cases are associated with increased risk factors of invasive fungal co-infections. In addition, COVID-19 infection leads to reduction in cluster of differentiation, especially CD4+ and CD8+ T cell counts, which may be highly implicated in fungal co-infections. Thus, the progress in MCM management is dependent on a different strategy, including reduction or stopping of implicit predisposing factors, early intake of active antifungal drugs at appropriate doses, and complete elimination via surgical debridement of infected tissues

    Omics-based insights into therapy failure of pediatric B-lineage acute lymphoblastic leukemia

    No full text
    B-lineage acute lymphoblastic leukemia (B-ALL) is the most common type of cancer seen in children and is characterized by a variable clinical course. Although there have been remarkable improvements in the therapy outcomes of pediatric B-ALL, treatment failure remains the leading-cause of death in 18% of the afflicted patients during the first 5 years after diagnosis. Molecular heterogeneities of pediatric B-ALL play important roles as determinants of the therapy response. Therefore, many of these molecular abnormalities have an established prognostic value in the disease. The present review discusses the omics-based revelations from epigenomics, genomics, transcriptomics and proteomics about treatment failure in pediatric B-ALL. Next it highlights the promise of the molecular aberration-targeted therapy to improve the treatment outcomes

    Key molecular drivers of chronic lymphocytic leukemia

    No full text
    Chronic lymphocytic leukemia (CLL) is an adult neoplastic disease of B cells characterized by variable clinical outcomes. Although some patients have an aggressive form of the disease and often encounter treatment failure and short survival, others have more stable disease with long-term survival and little or no need for theraphy. In the past decade, significant advances have been made in our understanding of the molecular drivers that affect the natural pathology of CLL. The present review describes what is known about these key molecules in the context of their role in tumor pathogenicity, prognosis, and therapy

    Alternatively Spliced Isoforms of <i>MUC4</i> and <i>ADAM12</i> as Biomarkers for Colorectal Cancer Metastasis

    No full text
    There is a pertinent need to develop prognostic biomarkers for practicing predictive, preventive and personalized medicine (PPPM) in colorectal cancer metastasis. The analysis of isoform expression data governed by alternative splicing provides a high-resolution picture of mRNAs in a defined condition. This information would not be available by studying gene expression changes alone. Hence, we utilized our prior data from an exon microarray and found ADAM12 and MUC4 to be strong biomarker candidates based on their alternative splicing scores and pattern. In this study, we characterized their isoform expression in a cell line model of metastatic colorectal cancer (SW480 & SW620). These two genes were found to be good prognostic indicators in two cohorts from The Cancer Genome Atlas database. We studied their exon structure using sequence information in the NCBI and ENSEMBL genome databases to amplify and validate six isoforms each for the ADAM12 and MUC4 genes. The differential expression of these isoforms was observed between normal, primary and metastatic colorectal cancer cell lines. RNA-Seq analysis further proved the differential expression of the gene isoforms. The isoforms of MUC4 and ADAM12 were found to change expression levels in response to 5-Fluorouracil (5-FU) treatment in a dose-, time- and cell line-dependent manner. Furthermore, we successfully detected the protein isoforms of ADAM12 and MUC4 in cell lysates, reflecting the differential expression at the protein level. The change in the mRNA and protein expression of MUC4 and ADAM12 in primary and metastatic cells and in response to 5-FU qualifies them to be studied as potential biomarkers. This comprehensive study underscores the importance of studying alternatively spliced isoforms and their potential use as prognostic and/or predictive biomarkers in the PPPM approach towards cancer

    Proteomics-based strategies to identify proteins relevant to chronic lymphocytic leukemia

    No full text
    Chronic lymphocytic leukemia (CLL), a malignant B-cell disorder, is characterized by a heterogeneous clinical course. Two-dimensional nano liquid chromatography (2D-nano-LC) coupled with matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS) (LC-MALDI) was used to perform qualitative and quantitative analysis on cellular extracts from 12 primary CLL samples. We identified 728 proteins and quantified 655 proteins using isobaric tag-labeled extracts. Four strategies were used to identify disease-related proteins. First, we integrated our CLL proteome with published gene expression data of normal B-cells and CLL cells to highlight proteins with preferential expression in the transcriptome of CLL. Second, as CLLs outcome is heterogeneous, our quantitative proteomic data were used to indicate heterogeneously expressed proteins. Third, we used the quantitative data to identify proteins with differential abundance in poor prognosis CLL samples. Fourth, hierarchical cluster analysis was applied to identify hidden patterns of protein expression. These strategies identified 63 proteins, and 4 were investigated in a CLL cohort (39 patients). Thyroid hormone receptor-associated protein 3, T-cell leukemia/lymphoma protein 1A, and S100A8 were associated with high-risk CLL. Myosin-9 exhibited reduced expression in CLL samples from high-risk patients. This study shows the usefulness of proteomic approaches, combined with transcriptomics, to identify disease-related proteins
    corecore