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Abstract 

 

CLL is a malignant disease of B-cells characterised by a heterogeneous 

clinical outcome. Some patients require an early treatment and have low 

survival time, while others never need treatment. Many prognostic markers 

have been established and used to help predict the clinical course of CLL. 

Despite advances in understanding the biology of CLL, the molecular 

differences underlying the variable clinical outcome of CLL are not yet fully 

understood. 

 

The hypothesis of this study was that the heterogeneous outcome of 

CLL could be driven, in part, by the aberrant expression of proteins in the two 

forms of CLL. Therefore, this study aimed to identify these proteins using 

proteomics approaches. 

 

In an attempt to achieve this goal, four steps were performed. Firstly, a 

cellular fractionation method was developed to extract cellular proteins into two 

different fractions (NP40 fraction for cytosolic protein enrichment and SDS 

fraction for nuclear protein enrichment).  

 

Secondly, extracted proteins were subjected to qualitative proteomics 

analysis using 2D nano-LC and MALDI TOF-TOF mass spectrometry in order 

to identify CLL proteins. Integrating the identified proteins (n=900) with 

previously published transcriptome of CLL cells and normal B-cells highlighted 
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20 proteins with preferential expression in CLL cells - some of which were 

linked to human cancer.  

 

Thirdly, iTRAQ technology coupled with 2D nano-LC and MALDI TOF-

TOF mass spectrometry was used to measure the relative expression of 

proteins in different CLL samples. This workflow identified 15 altered proteins 

in the two forms of CLL and detected 14 proteins with variable expression.  

 

Finally, six proteins were selected for investigation in an additional CLL 

cohort. Of these proteins thyroid hormone receptor-associated protein 3 

(TR150), T-cell leukaemia/lymphoma protein 1A (TCL-1) and S100A8 showed 

association with poor prognosis CLL and early requirement for treatment. 

Additionally, myosin-9 exhibited reduced expression in poor prognosis CLL 

samples.!

!

Overall, this study identified proteins with potential importance in CLL 

prognosis and pathology. These proteins merit investigation in a larger CLL 

cohort to further confirm their relevance to CLL. In addition, this study showed 

the usefulness of combining cellular fractionation with proteomics and 

transcriptomics to identify proteins with potential role in CLL.  
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Introduction 
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1.1 B-cell Chronic Lymphocytic Leukaemia (CLL) 

 Chronic lymphocytic leukaemia (CLL) is a neoplastic disease of 

mature-appearing lymphocytes in the peripheral blood, bone marrow, lymph 

nodes and spleen. The malignant cells in this disease are characterised by 

their expression of CD19 (B-cell marker) and co-expression of CD5 and CD23 

(Dighiero, 2005). The majority of CLL cases are asymptomatic at diagnosis 

and are discovered by chance in a routine blood check (Redaelli et al., 2004). 

The clinical course of CLL is heterogeneous ranging from an aggressive form 

with rapid progression to a stable form with no excess age-adjusted risk of 

mortality (Pepper et al., 2012).  

 

1.1.1 Epidemiology  

 CLL is the most common adult leukaemia in western society 

(Dighiero, 2005).  The average incidence of this disease in the UK is 

3/100,000 per year and is 5.5/100,000 worldwide (Oscier et al., 2004,!Redaelli 

et al., 2004). The risk of developing this disease increases with age; 

according to the Surveillance, Epidemiology and End Result (SEER), the 

median age at diagnosis of male CLL patients is 70 years, while that of female 

CLL patients is 74 years. However, 20-30% of CLL patients are less than 55 

years old at diagnosis (Oscier et al., 2004). This disease is more common in 

men than women (2:1) and the median survival time of CLL patients is longer 

among female patients compared to that of male patients (Molica, 2006).  
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 CLL is more prevalent in some ethnic populations than others. 

American people of Chinese, Japanese and Filipino origin are at 5 times lower 

risk of developing CLL than Caucasian American people (Weiss, 1979). 

Likewise, the incidence of CLL in Israel is significantly lower among African 

and Asian migrants compared to that of European migrants (Bartal et al., 

1978). 

 

1.1.2 Aetiology  

1.1.2.1 Environmental factors 

 No single environmental factor has been convincingly 

established as a risk factor for CLL. Unlike chronic myeloid leukaemia (CML), 

CLL is not associated with ionising radiation exposure (Boice et al., 1991). 

However, environmental agents associated with farming have been suggested 

to account for the high CLL incidence in farmers (Waterhouse et al., 1996). A 

few studies have reported an increased CLL incidence in people frequently 

exposed to electromagnetic fields (Floderus et al., 1993, Feychting et al., 

1997). While hepatitis C infection is common among B-cell non-Hodgkin's 

lymphoma patients (42%) compared to the healthy population (1%), it is less 

common in CLL patients (12%) (Ferri et al., 1996, Luppi et al., 1996). 

 

1.1.2.2 Hereditary factors 

 CLL shows the highest familial incidence among all major 

haematological malignancies indicating that some genetic factors may play a 

role in initiating CLL (Gunz and Veale, 1969). Individuals with first-degree 
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relatives diagnosed with CLL are more than three times at risk of developing 

CLL or other lymphoid malignancies than is the general population (Gunz et 

al., 1975). Moreover, affected individuals in such families develop CLL earlier 

than patients with sporadic CLL (Yuille et al., 2000). As a result, family history 

of CLL has been considered as an important risk factor for CLL (Cannon-

Albright et al., 1994). Another line of evidence that supports the involvement 

of genetic risk factors in CLL is the low CLL incidence in some ethnic groups, 

which does not considerably increase after migration to areas in which CLL 

incidence is high (Pan et al., 2002). 

 

 In spite of the awareness that genetic components play an 

important role in the increased incidence of CLL in certain families, such 

factors have not been fully determined. Genome-wide association studies 

have shown that polymorphisms in some genes are associated with the risk of 

developing an aggressive form of the disease. For example, a polymorphism 

in the gene encoding CD5 (Perez-Chacon et al., 2005); CD38 (Jamroziak et 

al., 2009) or tumour necrosis factor alpha (TNF-α) (Jevtovic-Stoimenov et al., 

2008). In addition, certain human leukocyte antigen (HLA) haplotypes, such 

as HLA-Cw16, have been found to be more common among CLL patients 

when compared to age-matched controls (Montes-Ares et al., 2006). Single 

nucleotide polymorphisms (SNPs) in genes encoding for interferon regulatory 

factor 4, GRAM domain-containing protein 1B, nuclear body protein SP140 

and protein kinase D2 have been reported as risk markers of developing CLL 

(Di Bernardo et al., 2008). Another study has also demonstrated an 
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association between disease-susceptibility and SNPs in or around genes 

encoding proteins involved in apoptosis and immune regulatory pathways 

such as CCNH, APAI, IL16, CASP8, NOS2A and CCR7 (Enjuanes et al., 

2008).  

 

1.1.3 Diagnosis of CLL 

 Most patients are diagnosed with CLL following a routine blood 

check with an increased lymphocyte count in absence of other CLL symptoms. 

However, some CLL patients present CLL symptoms, such as fatigue, 

anaemia, weight loss and lymphadenopathy at diagnosis (Oscier et al., 2004). 

A lymphocytosis of mature-appearing B-cells (!5.0x109/L) that lasts for more 

than one month is the first criterion of CLL diagnosis. Furthermore, CLL cells 

express specific surface antigens, which can be used to confirm the diagnosis 

of CLL. These antigens include B-cell markers CD19, CD20 and CD23. In 

addition, co-expression of CD5, which is a T-cell antigen, and low expression 

of surface immunoglobulin, CD22 and CD79b. These markers can be 

determined by performing immunophenotyping (Hallek et al., 2008).  

 

1.1.4 Biology of CLL 

 The historical view of CLL was that it is an accumulative disease 

where malignant cells have defects in their programmed cell death system, 

which results in long-lived cells that accumulate in the peripheral blood, bone 

marrow, lymph nodes and spleen (Dighiero, 2003). Probably this view has 

been based on the observation that the majority of CLL cells (>98%) in the 
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peripheral blood are arrested in G0 or the early G1 of the cell cycle and they 

over express anti-apoptotic proteins (Lanasa, 2010). However, an in vivo 

study using heavy water to measure the birth and death rates of CLL cells 

showed heterogeneous birth of CLL cells in different patients (0.1 to 1.76% of 

CLL cells divide per day). Likewise, this study also reported that patients vary 

in the death rate of their CLL cells (Messmer et al., 2005). It is likely that the 

ratio between birth and death of CLL cells determines the number of CLL cells 

and the clinical course of the disease (Lanasa, 2010). 

 

1.1.4.1 CLL cell trafficking 

 Perhaps the most critical biological process in CLL pathogenesis 

is trafficking of the malignant cells from peripheral blood to secondary 

lymphoid tissues and bone marrow. As the vast majority of CLL cells do not 

divide in the peripheral blood, they need to migrate to secondary lymphoid 

tissues and bone marrow to receive pro-survival and proliferative signals from 

accessory cells (Burger, 2012). Migration of CLL cells is a complex process 

which is regulated by different molecules, such as chemokines, chemokine 

receptors, integrins and cytoskeleton proteins (Davids and Burger, 2012). 

Stromal cells in secondary lymphoid tissue and bone marrow secrete 

chemokines like CXCL12 and CXCL13, which bind to their corresponding 

receptors (CXCL4 and CXCL5 respectively) on CLL cells in the peripheral 

blood. This binding induces chemotaxis of CLL cells toward the secondary 

lymphoid tissue and bone marrow (Deaglio and Malavasi, 2009). Upon 

migration of CLL cells to these sites, CLL cells attract accessory cells, such as 



! '!

T-cells and nurse-like cells through active secretion of certain chemokines like 

CCL2 and CCL3 to create the supportive influence of the microenvironment 

needed for the survival and expansion of CLL cells (Davids and Burger, 2012). !

 

 Given the critical the role of the microenvironment on CLL 

pathology, blocking migration of CLL cells to secondary lymphoid tissue and 

bone marrow appears an attractive strategy to prevent CLL cells from 

receiving the support of the microenvironment. Subsequently, this may 

facilitate targeting CLL cells using conventional chemotherapy. An in vivo 

study showed that blocking the integrin alpha4 beta1 (also know as very late 

antigene-4 (VLA-4)) inhibits CLL homing to bone marrow (Binsky et al., 2010). 

Similarly, targeting CXCR4 using small peptide inhibitors was shown to 

antagonise chemotaxis of CLL cells (Burger et al., 2005).!

!

1.1.4.2 Accessory cells!

 In the secondary lymphoid tissues and bone marrow, CLL cells 

meet with accessory cells such as T-cells, nurse-like cells and bone marrow 

stromal cells (Burger, 2012). These cells create the optimum 

microenvironment for CLL cell survival and growth. This occurs through direct 

contact between CLL cells and the accessory cells as well as through secreted 

cytokines from the accessory cells (Mainou-Fowler et al., 2001), Burger, 2012). 

Cytokines, such as IL-4, INFγ and TNFα support CLL survival throug up-

regulation of anti-apoptotic proteins like BCL2 (Caligaris-Cappio and Hamblin, 

1999, Caligaris-Cappio, 2011). In addition, direct contact between T-cells and 
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CLL cells via CD40L on T-cells and CD40 on CLL cells rescues CLL cells from 

apoptosis through the up-regulation of survivin and promotion of proliferation of 

CLL cells (Granziero et al., 2001) Furthermore, ligation of CD100 on CLL cells 

with plexin B1 receptor on T-cells induces the proliferation of CLL cells as well 

as prolonging their survival (Granziero et al., 2003). Physical contact between 

bone marrow stromal cells and CLL cells mediates protection and expansion 

CLL cells (Panayiotidis et al., 1996). Another type of accessory cells are 

nurse-like cells (NLCs), which also provide protection to CLL cells upon direct 

contact (Tsukada et al., 2002, Burger et al., 2000). More precisely, NLCs were 

shown to highly express CD31 and plexin B1 that bind to their receptors on 

CLL cells (CD38 and CD100 respectively) and induce growth and survival 

(Deaglio et al., 2005).!

!

1.1.4.3 Important molecules in the biology of CLL!

1.1.4.3.1 B-cell receptor 

 The B-cell receptor (BCR) complex is made of an assembly of 

surface immunoglobulin (sIg) and the non-covalently bound heterodimer 

CD79a/CD79b (Dighiero, 2005). Antigen stimulation of the BCR of CLL cells, 

that takes place in secondary lymphoid tissues, is a critical event in CLL 

initiation and progression (Caligaris-Cappio, 2011). This critical event has 

been implicated in several biological processes that are believed to be 

important in CLL pathogenesis, such as migration, survival and proliferation 

(Guarini et al., 2008, Quiroga et al., 2009). In vitro analysis showed that 

ligation of the BCR with an anti-IgM antibody protected CLL cells from 
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spontaneous apoptosis, enhanced their chemotaxis towards CXCL12 and 

CXCL13 and induced their proliferation (Guarini et al., 2008, Quiroga et al., 

2009). 

 

 In CLL cells, expression of the surface Ig, commonly IgM and IgD, 

is variable but lower than that of normal B-cells (Dighiero, 2005). Different 

mechanisms accounting for the reduced expression of surface Ig on CLL cells 

have been proposed. For example, point mutation, deletion and insertion in the 

gene encoding CD79b were found to be associated with diminished 

expression of BCR on CLL cells (Thompson et al., 1997).  In addition, 

defective folding and glycosylation of μ and CD79a chains were also related 

with reduced expression of BCR in CLL cells (Vuillier et al., 2005). 

 

 CLL is viewed as two subtypes of disease differing in their clinical 

outcome; unmutated CLL (U-CLL), where the CLL cells have not undergone 

somatic hypermutation in their immunoglobulin variable heavy chain genes, 

and mutated CLL (M-CLL), where the CLL cells have undergone somatic 

hypermutation in their immunoglobulin variable heavy chain genes (Hamblin et 

al., 1999, Damle et al., 1999). Although CLL cells express less BCR compared 

to normal B-cells, U-CLL cells show higher expression of BCR than M-CLL 

cells (Stevenson et al., 2011). In line with this finding, U-CLL cells were 

observed to respond better to BCR ligation compared to M-CLL cells 

(Stevenson and Caligaris-Cappio, 2004). An additional reason for this variation 
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was suggested to be due to the different affinity of BCR to antigen in U-CLL 

and M-CLL, where it is less specific in U-CLL (Stevenson et al., 2011). 

 

 In regard to the different responses following BCR engagement 

between U-CLL and M-CLL, a gene expression study showed that genes 

involved in signal transduction, transcription, cell-cycle regulation and 

cytoskeleton organisation were up-regulated in U-CLL but not in M-CLL 

following anti-IgM stimulation. Furthermore, in vitro studies showed that IgM 

cross-linking induced proliferation as well as progression into G1 phase in U-

CLL cells but not in M-CLL cells (Guarini et al., 2008, Quiroga et al., 2009).  

 

1.1.4.3.2 ZAP-70 

 Zeta associated protein of 70 kDa (ZAP-70) is a protein tyrosine 

kinase that was first described in T-lymphocytes and shown to be involved in 

T-cell receptor (TCR) signal transduction. Upon ligation of the TCR, immune 

receptor tyrosine-based activation motifs (ITAMs) are phosphorylated by a 

member of the Src family. This event leads to recruitment of ZAP-70 to the 

phosphorylated ITAMs and becomes activated to participate in the 

transduction of downstream signalling pathways. Normal B-lymphocytes do 

not use ZAP-70 for their BCR signalling, but instead use another protein 

tyrosine kinase, called Syk (Kipps, 2007). Interestingly, in Syk-deficient B-cells, 

ZAP-70 was shown to compensate for the loss of Syk and facilitate BCR 

signalling (Kong et al., 1995). Some CLL B-cells express levels of ZAP-70 

comparable to that expressed by normal T-lymphocytes (Chen et al., 2002).  
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 High expression of ZAP-70 was implicated in BCR signalling, 

migration and survival of CLL cells. Enhanced signalling of B-cell receptor 

(BCR) was reported in CLL cells that expressed high levels of ZAP-70 

compared to those that lacked ZAP-70 (Chen et al., 2002, Chen et al., 2005). 

Moreover, when ZAP-70– CLL cells were forced to express ZAP-70 by using 

an adenovirus vector encoding ZAP-70, they showed greater BCR signalling 

following IgM ligation (Chen et al., 2005). In addition, the response of CLL cells 

to migratory signals, such as CCL21 and CCL19, was shown to be associated 

with high expression of ZAP-70 (Richardson et al., 2006). Furthermore, 

enhanced survival of CLL cells, following co-culture with nurse-like cells in the 

presence of stromal-derived factor 1 (CXCL12), was observed for CLL cells 

with high levels of ZAP-70 (Richardson et al., 2006). 

 

 Targeting ZAP-70 in CLL cells seems an attractive strategy to 

induce apoptosis. In this regard, activated heat shock protein 90 (Hsp90), 

which binds to and stabilizes ZAP-70, was found to be highly expressed in 

ZAP-70+ CLL cells compared with normal lymphocytes or ZAP-70– CLL cells. 

Inhibition of activated Hsp90 was shown to cause degradation of ZAP-70, 

which in turn led to apoptosis in CLL cells (high ZAP-70) but not in normal 

lymphocytes (Castro et al., 2005). 

 

1.1.4.3.3 CD38 

 CD38 is a surface molecule that acts as an enzyme using its 

extracellular domain to participate in the synthesis of Ca2+-active metabolites 
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including cyclic ADP-ribose (cADPR) and ADPR and as a receptor, where it 

regulates the activation of an intracellular signalling pathway (Deaglio et al., 

2006). Expression of CD38 is dynamic during B-cell maturation; it is up-

regulated in bone marrow immature B-cells, reduced in resting normal B-cells 

and re-expressed in terminally differentiated plasma cells (Deaglio et al., 2003). 

CD38 displays different functions during lymphocyte development. For 

example, it causes bone marrow immature B-cells to undergo apoptosis, 

whereas it rescues mature B-cells from apoptosis in the germinal centre of the 

lymph nodes (Kumagai et al., 1995, Zupo et al., 1994). 

 

 CD38 expression was linked with important biological processes 

in CLL, such as proliferation, survival and migration. Expression of CD38 in 

CLL cells is up-regulated in spleen and lymph node, where they proliferate and 

survive, suggesting a potential role for CD38 in CLL survival and proliferation 

(Patten et al., 2008). In line with this observation, the interaction between 

CD38 and its ligand CD31, which is highly expressed on NLCs, was observed 

to activate migration and proliferation pathways of CLL cells (Deaglio et al., 

2005, Deaglio et al., 2010). Consistently, ligation of CD38 with an agonistic 

monoclonal antibody (mimicking CD31) in the presence of IL-2 was reported to 

prolong survival, induce differentiation and proliferation in CLL cells (Deaglio et 

al., 2003). Importantly, the same study reported that the effect of CD38 ligation 

on CLL proliferation was more pronounced in CD38+ CLL cells. In addition, the 

expression of CD38 was much higher on CLL cells that showed a response to 

the migratory signal CXCL12 than those that did not (Vaisitti et al., 2010). 
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Consistently, the same study showed that the chemotaxis of CLL cells towards 

CXCL12 was greatly enhanced upon ligation of CD38 with an agonistic 

monoclonal antibody. Interestingly, this effect was diminished by blocking 

CD38 with an antagonistic monoclonal antibody (Vaisitti et al., 2010). The role 

of CD38 in the pathogenesis of CLL, especially in CLL homing, made some 

authors suggest that blocking CD38 would inhibit CLL trafficking to secondary 

lymphoid tissues. This in turn would facilitate targeting CLL cells using 

conventional chemotherapy (Deaglio et al., 2008). 

 

1.1.4.3.4 NF-"B 

 NF-"B is a group of transcriptional factors, which in human 

includes c-Rel, Rel B, p50, p52, and Rel A (p65) (Hayden and Ghosh, 2012). 

In resting, unstimulated cells, I"B, an NF-"B inhibitor, keeps NF-"B inactive 

by preventing it from translocating to the nucleus (Hayden and Ghosh, 2012). 

Activation of NF-"B occurs when it is freed from I"B upon phosphorylation and 

proteasomal degradation of the latter. NF-"B then translocates to the nucleus 

and binds to the promoters/enhancers of its target genes and starts regulating 

their expression which influences a wide variety of cellular processes including 

survival, differentiation, and proliferation (Hayden and Ghosh, 2012). In this 

regard, NF-"B was reported to inhibit apoptosis and induce survival of different 

cell types (Chen et al., 1999). Interestingly, NF-"B shows high activity in CLL 

cells compared to normal B-lymphocytes with heterogeneous basal and 

inducible NF-"B level in CLL (Furman et al., 2000, Hewamana et al., 2008). 

The reasons for the high activity of NF-"B seen in CLL are still unclear, but 
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there are a number of factors that can increase NF-"B activity in CLL cells 

such as CD40 ligation, IL-4 and IL-13 (Furman et al., 2000, Zaninoni et al., 

2003).  

 

 High activity of NF-"B was implicated in the pathology of CLL. 

Rel A DNA binding was reported to correlate negatively with sensitivity to 

fludarabine and spontaneous apoptosis of freshly isolated CLL cells and 

positively with CLL cell counts (Hewamana et al., 2008). In agreement with this 

finding, the authors also showed that Rel A DNA binding was higher in CLL 

samples from patients with shorter lymphocyte doubling times. The importance 

of NF-"B in different types of cancer, including CLL, made it an attractive 

therapeutic target. In this regard, a study used 

dehydroxymethylepoxyquinomicin (DHMEQ) to diminish NF-"B activity in CLL 

cells. The results showed that inhibiting the activity of NF-"B induced 

apoptosis selectively of CLL cells (Horie et al., 2006). 

 

1.1.4.3.5 BCL2 

 Programmed cell death (apoptosis) is a complex biological 

process that is required to control cell number and to eliminate infected or 

damaged cells. Therefore, the balance between anti-apoptotic forces and pro-

apoptotic forces is essential for normal cellular development (Adams and Cory, 

1998). Dysfunction of this process has been shown to contribute to the 

development of different diseases including cancer (Hajra and Liu, 2004). 

Apoptosis is mainly controlled by the BCL2 family, which consists of three 
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groups. Firstly, there is the anti-apoptotic group, which includes proteins, such 

as BCL2, BCL-XL and myeloid cell leukaemia sequence 1 (MCL1). Secondly, 

there is the multi-domain pro-apoptotic group that includes proteins with three 

BH domains (BH1, BH2 and BH3) like BAX and BAK. Finally, there is the BH3-

only group of pro-death proteins which contains BIM, BID, BAD, BIK, and 

NOXA (Cory and Adams, 2002). 

 

 Several studies demonstrated that CLL cells express large 

amounts of the anti-apoptotic protein BCL2 as compared to normal B-cells or 

PBMCs from healthy donors (Hanada et al., 1993), (Del Gaizo Moore et al., 

2007, McCarthy et al., 2008, Hanada et al., 1993). Unlike follicular lymphoma, 

BCL2 translocation is not common in CLL rendering the cause of the high 

expression of BCL2 in CLL unclear (Dyer et al., 1994). However, different 

explanations for this observation have been suggested. For example, the 

expression of cytosolic nucleolin, which stabilises the mRNA of BCL2, was 

found to positively correlate with the expression of BCL2 in CLL cells (Otake et 

al., 2007). In addition, miR-15a and miR 16-1, which are natural antisense 

BCL2 interactors, were shown to inversely correlate with the expression of 

BCL2 in CLL cells (Cimmino et al., 2005). 

 

 High expression of BCL2 is a hallmark of CLL cells and is 

believed to play a crucial role in the survival of CLL cells and their 

accumulation in lymph nodes, bone marrow and peripheral blood. In this 

regard, higher levels of BCL2 are found in progressive CLL compared with 
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stable CLL (Marschitz et al., 2000). Furthermore, higher expression of BCL2 

was shown to positively correlates with high CLL cell counts (>105/µl) (Kitada 

et al., 1998). Therefore, targeting BCL2 is perhaps an attractive strategy to 

induce apoptosis of CLL cells. In a lymphoblastic leukaemia model, elimination 

of BCL2 expression quickly induced apoptosis of the leukaemic cells (Letai et 

al., 2004). Moreover, apoptosis of CLL cells was induced upon repression of 

BCL2 by miR 15a and miR16-1 (Cimmino et al., 2005). Similarly, a reduction of 

BCL2 expression by antisense oligonucleotides was shown to induce 

apoptosis of CLL cells (Pepper et al., 1999). Furthermore, the small molecule 

BCL2 inhibitor HA14-1 (ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy- 2-

oxoethyl)-4H-chromene-3-carboxylate) effectively induced apoptosis of CLL 

cells (Campas et al., 2006). 

 

1.1.4.3.6 MCL1 

 Another anti-apoptotic protein, MCL1 was also reported to be 

important in the pathology of CLL. In vitro analysis showed a strong correlation 

between resistance of CLL to fludarabine and expression of MCL1 (Pepper et 

al., 2008). Similarly the expression of MCL1 was shown to inversely correlate 

with chemotherapy response in CLL patients (Kitada et al., 1998). These 

observations suggest that MCL1 is a critical survival factor in CLL rendering it 

potentially a good therapeutic target. Different approaches have been 

employed to decrease MCL1 and thus induce apoptosis of CLL cells. For 

example, CLL cells were shown to undergo apoptosis upon reduction of MCL1 

expression by siRNA. Apoptosis continued even in the presence of sustained 
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BCR stimulation (Longo et al., 2008). In addition, reduction of MCL1 

expression by homoharringtonine (HHT) was shown to induce apoptosis in 

CLL cells. Interestingly, stromal cell protection of CLL cells via induction of 

MCL1 expression did not prevent the apoptosis driven by HHT (Chen et al., 

2011). 

 

 Of other anti-apoptotic proteins, high expression of the anti-

apoptotic protein BAG-1 was also reported to be associated with a failure to 

fulfil complete response to treatment (Kitada et al., 1998). In addition, high 

levels of BCL-XL mRNA were found in 70% of CLL patients studied. In 

contrast, mRNA of the pro-apoptotic protein BCL-XS was low in all CLL 

patients (Gottardi et al., 1996). More importantly, the ratios between anti-

apoptotic and pro-apoptotic proteins were shown to play an important role in 

CLL cell survival. For example, low ratios of BCL2 (anti-apoptotic protein) to 

BAX (pro-apoptotic protein) were found in CLL cells sensitive to treatment, 

while high ratios were detected in CLL resistant to treatment (Thomas et al., 

1996). 

 

1.1.4.3.7 Chromosomal aberration  

 The majority of CLL patients show chromosomal aberrations in 

their CLL cells. A study that used fluorescence in situ hybridization to examine 

chromosomal abnormalities in 325 CLL patients found that 82% of them had 

chromosomal aberrations in their CLL cells (Dohner et al., 2000). This study 

also showed that the most common chromosomal change was a deletion in 
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13q (55%), a deletion in 11q (18%), trisomy 12 (16%), a deletion in 17p (7%), 

and a deletion in 6q (6%). Importantly, these chromosomal changes were 

found to have an impact on the pathology of CLL. For example, miR15 and 

miR16 are located in the region deleted in the 13q abnormality. These two 

genes were either deleted or down-regulated in the majority (68%) of CLL 

patients (Calin et al., 2002). Interestingly, miR15 and miR16 function as 

antisense BCL2 integrators, which negatively regulate BCL2 expression at the 

level of transcriptional level (Cimmino et al., 2005). In addition, expression of 

miR29 and miR181 were shown to be reduced in 11q deleted patients. These 

two miRs were reported to negatively regulate the expression of the oncogene 

TCL1 (Pekarsky et al., 2006). CLL cells with an 11q deletion were also found 

to highly express ATF5, a member of the activating transcription factor 

required for cell survival, compared with CLL cells with 13q abnormality or a 

normal karyotype (Mittal et al., 2007, Persengiev et al., 2002). More 

importantly, deletion of the 11q includes genes that encode ATM (ataxia 

telangiectasia mutated) (Stilgenbauer et al., 1996). Upon DNA damage, the 

tumour suppressor gene product p53 becomes activated by ATM, which in 

turn promotes cell cycle arrest for either DNA repair or cell death (Hawley and 

Friend, 1996). CLL patients with an ATM deficiency are associated with an 

aggressive form of CLL (Starostik et al., 1998). In the same context, the TP53 

tumour suppressor gene, which encodes for p53, is usually deleted in patients 

with a 17p abnormality (Dohner et al., 1999). CLL patients with deletion or 

mutation in TP53 were reported to have an aggressive form of CLL with rapid 
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lymphocyte doubling times (El Rouby et al., 1993, Shaw and Kronberger, 

2000). 

 

1.1.5  Prognosis of CLL 

 Individual CLL patients have different clinical courses, where 

some patients have indolent disease and probably will never require treatment, 

whereas others have an aggressive form of CLL and thus need treatment 

(Dighiero and Hamblin, 2008). The challenge in CLL is that most patients (both 

types) are diagnosed with early stage disease (Pepper et al., 2012). Therefore, 

predicting patients whose CLL will rapidly progress and need treatment can be 

difficult even with the help of prognostic markers that have been used in CLL.  

 

 Some of the molecules that were shown to involve the biology of 

CLL, which were discussed in section 1.1.4.3, were also reported to serve as 

prognostic markers in CLL. In this section (1.1.5), the most commonly used 

prognostic markers in CLL including these molecules are discussed. 

 

1.1.5.1 CLL stages 

 The first recognised prognsotic tool in CLL was the Rai staging 

system published in 1975. It was based on clinical observations such as 

lymphadenopathy, organomegaly and cytopenias (anaemia and 

thrombocytopenia) (Rai et al., 1975). The Rai staging system includes five 

different stages as shown in Table 1. 
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Stage Clinical features Median survival 

Stage 0 Lymphocytosis in blood in bone marrow >150 months 

Stage I Lymphocytosis with enlarged lymph nodes 101 months 

Stage II Lymphocytosis with enlarged liver or spleen or both 71 months 

Stage III Lymphocytosis with anaemia 19 months 

Stage IV Lymphocytosis with thrombocytopenia 19 months 

   

Table 1: Original Rai staging system (Adapted from Rai et al., 1975). 

 

 The Rai staging system was followed by Binetʼs staging system 

(1981) which focused on two parameters; the number of involved lymph nodes 

and the development of cytopenias, to create three stages A, B and C, Table 2 

(Binet et al., 1981). 

!

Stage Clinical features Median survival 

Stage A < 3 involved areas  Not reached 

Stage B ≥ 3 involved areas 84 months 

Stage C Anaemia and/or thrombocytopenia 24 months 

 

Table 2: Binet staging system. Involved areas include axillary, cervical, inguinal, 

spleen and liver. (Adapted from Binet et al., 1981) 
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   Due to the simplicity and reproducibility of these staging systems, 

they have been widely used and their prognostic value has been broadly 

accepted. Moreover, these systems are effective in identifying subgroups of 

patients who require treatment.  Nevertheless, the major limitation of these 

two systems is that they do not predict the progression of the disease 

(Montserrat, 2006). This is very important since the majority of CLL patients 

are diagnosed at an early stage of the disease (Pepper et al., 2012).  

 

1.1.5.2 IGHV gene status 

 Upon stimulation, B-cells enter germinal centres in the follicles of 

lymph nodes. There they undergo somatic hypermutation (SHM) of their 

immunoglobulin variable heavy chain genes (IGHV) under the direction of T-

helper cells and in the presence of antigen presented by follicular dendritic 

cells. This process is required to enhance antibody affinity towards an antigen, 

as B-cells with low affinity antibody undergo apoptosis while those with the 

highest affinity for antigen are selected to differentiate to plasma cells and 

memory B-cells (Van Bockstaele et al., 2009). A study by Hamblin et al (1999) 

showed that 45% of CLL cases do not undergo SHM, as defined by ≥98 

sequence homology of their IGHV genes with the closest germline sequence. 

The other 55% of CLL cases do undergo IGHV SHM as their IGHV sequences 

are >2% different from that of germline.  

 

 The mutational status of IGHV is regarded as the most accurate, 

widely applicable, prognostic marker in CLL. U-CLL is associated with more 
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aggressive disease and shorter survival time, while M-CLL is associated with 

an indolent disease and longer survival time (Hamblin et al., 1999, Damle et al., 

1999, Pepper et al., 2012).  

 

 Although mutational status is a good predictor of the clinical 

outcome of CLL, certain gene segment usage of IGHV was shown to 

associate with a particular form of CLL independent of the mutational status of 

IGHV. For example, patients with V4-34 usage were reported to have a 

favourable form of CLL and patients with V3-21 usage were found to have an 

aggressive form of CLL regardless of their IGHV mutational status (Parker and 

Strout, 2011) 

 

1.1.5.3 ZAP-70 

 Although CLL cells share a common gene expression profile 

“signature” independent of their IGHV mutational status, a group of genes 

were differentially expressed in U-CLL and M-CLL. Among these genes, ZAP-

70 was the most altered gene in the two groups of CLL cases, where it was 4-

fold over-expressed in U-CLL (Rosenwald et al., 2001). Subsequent studies 

confirmed the importance of ZAP-70 in CLL and showed that ZAP-70 is a 

surrogate marker of IGHV mutational status (Chen et al., 2002, Crespo et al., 

2003). However, a later study showed that ZAP-70 expression is not always in 

concordance with the mutational status of IGHV (Rassenti et al., 2004). This 

study reported that 29% of U-CLL cases were negative for ZAP-70 and 17% of 

M-CLL cases were positive for ZAP-70.  
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 ZAP-70 is a good indicator of the time to first treatment (TTFT) as 

well as survival of CLL patients. The cut-off value that discriminates between 

positive and negative ZAP-70 expression, when measured by flow cytometry, 

has been suggested to be 20% (≥20% = ZAP-70+ and <20% = ZAP-70–) 

(Crespo et al., 2003, Rassenti et al., 2004). The median TTFT in ZAP-70+ CLL 

cases was 3.2 years versus 9 years in ZAP-70– CLL cases (Rassenti et al., 

2004). Similarly the median time of survival in ZAP-70+ CLL was 7.5 years, 

whereas the median was not reached in ZAP-70– CLL (Crespo et al., 2003). 

The same study showed that the expression of ZAP-70 in CLL cells is stable 

during the course of the disease. T-cells and NK cells express ZAP-70, thus 

caution should be taken when determining ZAP-70 expression in CLL cells by 

not including that of T-cells and NK cells (Van Bockstaele et al., 2009). 

 

1.1.5.4 CD38 

 CD38 expression was the first reported surrogated marker of 

IGHV mutational status (Damle et al., 1999). However, a later study reported 

28% discordance between CD38 and IGHV mutational status (Hamblin et al., 

2002). The same study also showed that CD38 expression in CLL is an 

independent prognostic marker, where high expression was associated with 

poor prognosis CLL. In line with this view, another study noticed that high 

CD38 expression was associated with shorter TTFT and overall survival as 

well as advanced stage of disease and a poor response to chemotherapy 

(Durig et al., 2002). The median TTFT in patients with high CD38 expression 

was 2.7 years versus 10 years in patients with low CD38 expression. In 
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addition, the median survival time was 10 years in patients with high CD38 

expression and not reached in patients with low CD38 expression. 

 

 There have been different cut-offs that have been suggested to 

define CD38+ CLL and CD38– CLL e.g. 20% (Durig et al., 2002) and 30% 

(Hamblin et al., 2002). CD38 expression was reported to change in some 

patients (24%) during the course of CLL (Hamblin et al., 2002). Nevertheless, 

Durig et al., 2002 demonstrated that although CD38 expreesion may change 

over time, it does not change from positive to negative or vice versa, this study 

was based on 20% cut off.  

 

1.1.5.5 Chromosomal abnormalities  

 Chromosomal aberrations have a prognostic value in CLL. 

Deletions in 13q are associated with a favourable prognosis of CLL, while 

deletion in 11q and in 17p are associated with poor prognosis of the disease 

(Dohner et al., 2000). The same study showed that survival times as well as 

the TTFT in CLL patients were dramatically different based on the following 

chromosomal aberrations: 17p, 11q, 6q and 13q (Table 3). Patients with a 17p 

abnormality show resistance to standard anti-leukaemia agents such as 

alkylating drugs and/or purine nucleoside analogues. However, they show a 

better response to alemtuzumab, either alone or in combination with other 

chemotherapy (Hallek et al., 2008). Furthermore, remarked lymphadenopathy 

is commonly found in patients with an 11q aberration (Byrd et al., 2004).  
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     17p     11q      6q     13q 

           Median TTFT (years)     2.7     6.6     9.5     11.1 

        Median survival  (years)     0.8     1.1     2.8      7.2 

 

Table 3: TTFT and survival in CLL patients on the basis of chromosomal 

abnormalities. Adapted from (Dohner et al.,2000). 

 

1.1.6 Treatment of CLL 

 As mentioned earlier CLL follows different clinical courses, where 

some patients suffer from an aggressive form while others have a very 

indolent form of the disease. Most patients are diagnosed at an early stage of 

the disease, where the risk is low and therefore they do not benefit from 

treatment. Nevertheless, as the disease progresses and becomes 

symptomatic, patients will start receiving treatments (Gribben, 2010). There 

have been several factors to make a decision of whether a patients needs 

treatment or not. For example, advanced clinical staging, symptomatic disease, 

burden of disease, age, co-morbid illnesses, adverse prognostic factors and 

the availability of treatments that alter survival (Byrd et al., 2004). It is 

important to mention that CLL treatment does not cure the disease, yet it can 

improve patientsʼ health and provide relief of the disease symptoms (Dighiero, 

2003). Current CLL treatments include alkylating agents, purine analogues and 

monoclonal antibodies, used either alone or in combination (Redaelli et al., 

2004).  
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1.1.6.1 Alkylating agents 

 Alkylating agents such as chlorambucil are the historical 

mainstay of CLL treatment. Due to its lower toxicity, lower cost and oral route 

of administration it is often considered as a good first-line therapy for CLL 

patients. However, patients treated with alkylating agents are at 2.5-fold 

greater risk of developing a secondary acute myeloid leukaemia (Abbott, 2006). 

The complete response rates following treatment with chlorambucil are low 

with no recorded survival benefits, when prescribed alone (Redaelli et al., 

2004). Nevertheless, combinations of different alkylating agents, such as CVP 

(cyclophosphamide, vincristine, prednisone) show a better response but with 

the same overall survival as chlorambucil alone (Byrd et al., 2004).  

 

1.1.6.2 Purine analogues 

 Purine analogues, which are potent inhibitors of DNA repair, 

showed higher activity than alkylating agents in CLL treatment. In this regard, 

monotherapy of purine analogues including fludarabine, cladribine, or 

pentostatin demonstrate a greater activity in CLL than alkylating agents 

(Pinilla-Ibarz and McQuary, 2010). Based on the mode of action of purine 

nucleoside analogues and akylating agents, where the latter cause DNA 

damage and the former inhibit DNA repair, the combination of these agents 

may show a greater activity in CLL. In this regard, the CLL4 clinical trial 

reported that CLL patients treated with a combination of fludarabine and 

cyclophosphamide had a higher overall response, complete response and 

progression-free survival than patients treated with fludarabine did. As a result 
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the trial concluded that fludarabine and cyclophosphamide should be standard 

treatment for CLL (Catovsky et al., 2007). 

 

1.1.6.3  Monoclonal Antibodies 

The knowledge of the surface antigen expression of CLL cells 

was used to develop monoclonal antibodies that target these cells using an 

immunotherapy approach. Examples of these drugs are rituximab and 

alemtuzumab that target CD20 and CD52 respectively (Abbott, 2006). 

Possibly due to the low surface expression of CD20 on CLL cells, rituximab 

showed low activity as a single agent. In contrast, alemtuzumab showed a 

better activity when prescribed alone and was shown to be beneficial for 

patients with chromosomal abberations including 11q and 17p or P53 

mutations (Pinilla-Ibarz and McQuary, 2010). Importantly, improvement in CLL 

patientsʼ overall survival was possible to achieve through introducing rituximab 

to chemotherapy (fludarabine and cyclophosphamide) as reported in the CLL8 

trial (Hallek et al., 2010). In addition, this trial demonstrated that patients 

treated with chemoimmunotherapy (fludarabine, cyclophosphamide, and 

rituximab) had a higher progression-free survival than patients who received 

only fludarabine and cyclophosphamide. 
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1.2 Introduction to Proteomics 

 Proteomics is a field that studies proteins expressed by an 

organism, tissue, or cells on a large scale. This includes protein identification, 

protein expression profiling, post-translational modifications (PTMs), protein 

localization, protein-protein interactions and protein activity and function 

(Twyman, 2004). Proteomics relies on four main pillars: protein/peptide 

separation technologies, such as electrophoresis and liquid chromatography 

to reduce sample complexity; mass spectrometry for protein/peptide mass 

detection; database resources and bioinformatics tools to deal with the large 

amount of data produced by mass spectrometry analysis (Liebler, 2002).  

 

 Before the emergence of proteomics the idea of studying 

biological molecules globally was introduced by transcriptomic approaches, 

(Cox and Mann, 2007). However, with proteomics, some of the limitations of 

transcriptomics can be overcome. For example, protein expression can be 

more accurately determined by using quantitative proteomics rather than 

inferring it from mRNA expression (Gygi et al., 1999b, Anderson and 

Seilhamer, 1997). Moreover, proteomics can detect PTMs of proteins, which 

are not detectable at the mRNA level (Yates et al., 2009). In addition, 

transcriptomic output lacks information regarding protein localization, which 

can be obtained using proteomics approaches when sample subcellular 

fractionation is employed (Yates et al., 2005). However, proteomics 

approaches still suffer from other limitations, particularly the difficulty 

associated with identifying proteins with low abundance (Sriyam et al., 2007).!
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Therefore, combining these two omic approaches has the potential to 

compensate for their limitations and thus help to better elucidate the biology 

of a disease or normal cellular function (Hegde et al., 2003).   

 

1.2.1 Complexity of the human proteome  

 The human proteome is extremely complex and thus it is 

impossible, at least presently, to identify the entire proteome of a human cell 

or body fluid in a single-step (Ahmed, 2009). In this regard, it is estimated that 

the number of protein-coding genes expressed by a human genome are 

approximately 20,500 (Clamp et al., 2007). However, the number of proteins 

is believed to be significantly greater due to alternative splicing and PTMs 

(Nilsen and Graveley, 2010). Importantly, the complexity of a human 

proteome is not only caused by the large number of proteins but also by the 

different properties of these proteins, such as their concentration. In this 

regard, individual proteins expressed by a human cell greatly vary in their 

concentration with a dynamic range of at least six-fold (Wu and Han, 2006). 

This range is even wider in body fluids, such as plasma, where the difference 

in protein abundance is more than 10 orders of magnitude (Anderson and 

Anderson, 2002).  

 

1.2.2 Sample preparation 

 Given the extreme complexity of the human proteome, sample 

preparation prior to protein identification is a key factor for a successful 

proteomics study (Ahmed, 2009). There are many methods that can be used 
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to reduce sample complexity (Dreger, 2003, Ahmed, 2009, Huber et al., 2003). 

However, in general any sample preparation will lead to the loss of some 

proteins (Westermeier et al., 2008). Therefore, sample preparation should 

always be kept to the minimum level as long as it reduces sample complexity 

sufficiently to facilitate the identification of many proteins. 

 

 Although a complete cell lysate can be used for proteomics 

experiments, performing sample fractionation prior to protein identification 

reduces sample complexity and allows more coverage of proteome of the 

sample (Brewis and Brennan, 2010, Dreger, 2003). For example, some 

studies have used different detergents to generate sample fractions 

corresponding to different compartments, such as cytosolic proteins, nuclear 

proteins and membrane proteins from intact cells (Barnidge et al., 2005a, 

Brennan et al., 2009). These studies have shown that analysing each of 

these fractions individually by mass spectrometry following further separation 

by liquid chromatography deepens the indentified proteome and gives a clue 

to protein localization. 

 

 Organelle fractionation methods can be employed when 

proteins of a particular organelle are targeted for analysis (Huber et al., 2003). 

This type of sample preparation is commonly performed by homogenizing 

cells in the absence of detergents followed by isolation of a specific organelle, 

for example the nucleus, using differential gradient centrifugation (Dreger, 

2003). This method reduces sample complexity, enriches specific proteins of 
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an organelle, for example the nuclear proteins, and also reveals more 

accurate information about protein localization. However, it is time consuming 

and labour intensive with low protein recovery (Yates et al., 2005).  

 

1.2.3 Strategies for protein/peptide separation 

 As mentioned earlier, reducing sample complexity is a very 

critical step within a successful proteomics workflow. By exploiting the diverse 

properties of proteins, they can be separated according to their size, such as 

by SDS-PAGE or gel filtration chromatography; net charge, such as by 

isoelectric focussing or ion exchange chromatography; hydrophopicity, such 

as by reverse phase chromatography; and binding characteristics, such as by 

affinity chromatography (Liebler, 2002, Twyman, 2004, Westermeier et al., 

2008). 

 

1.2.3.1 Two-dimensional electrophoresis (2DE) 

 Using multiple orthogonal separation methods is essential to 

improving protein separation in order to effectively reduce sample complexity 

(Sriyam et al., 2007). A typical example of this type of separation is 2DE, 

where proteins are first separated on the basis of their ioselectric point (1st 

dimension) using isoelectric focussing and then further separated according 

to their size (2nd dimension) using SDS-PAGE (Figeys, 2005). 2DE shows a 

great capacity for resolving a large number of proteins (3000–10000) (Issaq 

et al., 2002). Nevertheless, it suffers from limitations such as low 

reproducibility, poor separation of very acidic or basic proteins, poor solubility 
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of hydrophobic proteins and poor detection of low abundance proteins 

(Ahmed, 2009). 

 

1.2.3.2 Liquid chromatography (LC) of peptides  

 As peptides are smaller and more soluble than proteins, they 

are easier to separate compared with proteins (Issaq, 2001). Therefore, some 

of limitations of the 2DE, such as the difficulty of resolving membrane proteins, 

can be overcome when a protein digest is subjected to separation by liquid 

chromatography (LC) (Issaq, 2001). In LC, the concept of using multiple 

orthogonal separation methods to improve sample separation can also be 

applied (Yates et al., 2009). In this type of separation, a sample is subjected 

to separation by multiple LC columns, such as an ion exchange column 

followed by a reverse phase column (Westermeier et al., 2008). 

 

1.2.3.2.1 Ion exchange chromatography (IEXC) 

 Ion exchange chromatography (IEXC) separation of peptides is 

performed on the basis of peptide pH dependent net charge. Peptides are run 

through an IEX column containing a matrix of spherical particles covered with 

positively or negatively charged ionic groups. Peptides will have different ionic 

strength and thus they will differentially bind to the opposite charge on the 

solid phase column. Peptides with a net charge of zero or the same charge 

as the solid phase will not bind to the column and will be eluted first in the 

breakthrough fraction. However, for bound peptides to be eluted a higher 

concentration of the elution buffer (mobile phase) is required. Typically salt 
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ions (Na+ or Cl−) of the elution buffer compete with the bound peptides for the 

charges on the column causing some peptides to begin to elute. Therefore, 

gradually increasing the salt concentration in the mobile phase elutes 

peptides with low attraction to the column earlier than those with high 

attraction (Liebler, 2002, Twyman, 2004, Westermeier et al., 2008).  

 

1.2.3.2.2 Reverse phase chromatography (RPC) 

 In this kind of separation, peptides are resolved according to 

their hydrophobicity. The separation occurs in a column packed with matrix 

covered with hydrophobic alkyl chains. Peptides bind to the hydrophobic solid 

phase in strength proportional to their hydrophobicity. Hydrophilic peptides 

will not bind to the column, but instead they will elute in the breakthrough 

fraction. Elution of bound peptides from the column is a function of increasing 

the proportion of organic solvent in the mobile phase. Therefore, a linear 

increase of organic solvent concentration in the mobile phase causes 

peptides with low hydrophobicity to elute earlier than those with high 

hydrophobicity (Liebler, 2002, Twyman, 2004, Westermeier et al., 2008).  

 

1.2.3.2.3 On-line two-dimensional liquid chromatography (2DLC) 

with salt plug  

 The IEX column and RP column can be on-line with each other 

(on-line 2DLC with salt plugs), where peptides on the IEX column (1st 

dimension) are separated according to their net charge using a breakthrough 

fraction followed by increasing salt fractions. Separated peptides are then 
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moved to the RP trap where desalting and concentration take place and 

applied to the RP column (2nd dimension) for further separation on the basis 

of their hydrophobicity. The power of this configuration is that it is fully 

automated and requires less material compared with off-line 2DLC 

(Westermeier et al., 2008, Yates et al., 2009).  

 

1.2.4 Mass spectrometry (MS) 

 A mass spectrometer is comprised of three main components; 

an ionization source, an analyser and a detector. Upon the application of 

sample into the mass spectrometer, peptides are ionised and extracted into 

the analyser where they are separated on the basis of their mass to charge 

(m/z) ratio. Separated ions are then recorded by a detector. There are many 

different mass spectrometry instruments, where different configurations are 

employed for peptide ionisation and peptide mass analysis (Mann et al., 

2001).  

 

1.2.4.1 Peptide ionization and peptide mass fingerprinting 

 In matrix-assisted laser desorption/ionization (MALDI) mass 

spectrometry peptides and UV absorbing matrix, such as α-cyano-4-

hydroxycinnamic acid (CHCA), are dissolved in a solvent and applied to a 

metal plate. When the solvent evaporates, it leaves the peptides embedded 

within the matrix crystals. Upon the application of a focused UV beam on the 

sample for a short time energy is absorbed by the matrix and then emitted as 

heat causing sublimation and ionization of peptides (Karas and Hillenkamp, 
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1988). The ions are extracted into the mass spectrometry (MS) analyzer 

where they accelerate according to their m/z. Since ions produced by MALDI 

are predominantly singly charged, the acceleration force is constant on all 

these ions. However, these ions have different masses, which makes them 

arrive at the detector at different time points. Ions with low mass arrive at the 

detector earlier than those with a larger molecular weight (Wysocki et al., 

2005, Figeys, 2005). 

 

 Soft ionization of peptides can also be conducted using a 

different method known as electrospray ionization (ESI). In this type of 

ionization, peptides are dissolved in a solvent and are sprayed through a 

narrow tube at the end of which a high electric field is held. The solvent in the 

sprayed droplets starts evaporating, leaving multiple charges on the peptides 

in the gaseous phase. These peptides enter the MS analyzer and are 

propelled to the detector at a speed proportional to their m/z (Mann et al., 

2001). 

 

 The output of such runs does not provide information regarding 

amino acid sequence of a peptide, but determines the m/z of examined 

peptides. This approach can be used when a protein of interest is resolved in 

2DE, excised, digested by trypsin and analysed by MALDI-TOF MS. The 

sizes of measured peptides are searched against a database that contains in 

silico digested proteins in order to match the protein that these peptides 
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belong to with a statistical confidence. This is known as peptide mass 

fingerprinting (PMF) (Thiede et al., 2005) 

 

1.2.4.2 Tandem mass spectrometry (MS/MS) 

 To obtain amino acid sequence data of peptides, an additional 

step is required following the assessment of the peptide masses. This step is 

peptide fragmentation that occurs in a collision-induced dissociation (CID) 

chamber. The peptide fragments exit the CID chamber and ʻflyʼ to the detector 

at a speed proportional to their m/z. The output of this analysis is series of 

spectra with different m/z as well as different intensities (Steen and Mann, 

2004). 

 

 The fragmentation of the peptide backbone in the CID chamber 

occurs predominantly at three possible bonds. Consequently, there are six 

possible ions that result from such peptide fragmentation; a, b, and c, ions 

that contain the N-terminal of the parent peptide; and z, y and x ions which 

contain the C-terminal of the parent peptide (Figure 1.1) (Lim and Elenitoba-

Johnson, 2004). The CID of each peptide happens inefficiently and results in 

multiple fragments of different lengths. The most common fragmentation of 

the peptide backbone results in either b or y ions. The difference in m/z 

between two adjacent b or y ions indicates the monoisotopic mass of the 

amino acid residue (Figure 1.2) (Brewis and Brennan, 2010). It is worth 

mentioning that the first amino acid to read using y ions is either lysine (K) or 

arginine (R) when trypsin, the enzyme that is most commonly used 



Figure 1.1: Peptide fragmentation for amino acid sequencing using 

tandem mass spectrometry. Six possible types of ions can be generated 
from the fragmentation in the peptide backbone. These include a, b, and c, 

ions that contain the N-terminal of the parent peptide; and z, y and x ions 
which contain the C-terminal of the parent peptide. Adapted from (Lim and 

Elenitoba-Johnson, 2004). !
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Figure 1.2: Peptide sequencing by tandem mass spectrometry. The first 
MS determines the masses of different peptides (A). Subsequently, a 
particular peptide, in this case (1733.799 Da), is selected for fragmentation in 
the CID chamber to obtain amino acid sequence data (B). Only y ions are 
shown in this example through which the peptide sequence was deducted. 
Adapted from (Brewis and Brennan, 2010).!
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for protein digestion that cleaves on the C-terminal of K or R, is used 

(Westermeier et al., 2008). The sequence data are then searched against a 

database to achieve an identification (Steen and Mann, 2004).  

 

 Although PMF is high throughput and less expensive, it fails to 

identify proteins in mixtures as it relies on the peptide mass rather than 

peptide sequence (Thiede et al., 2005, He et al., 2008). This challenge can be 

overcome by using tandem mass spectrometry as it identifies proteins in 

mixtures on the basis of their peptide sequences. In other words, even if two 

proteins have identical tryptic peptides masses yet different sequence, 

tandem mass spectrometry is capable of distinguishing between these 

proteins. Therefore, tandem mass spectrometry has largely superseded PMF 

(Coon et al., 2005).  

 

1.2.5 Options for the proteomics workflows 

 There are different options forßß proteomics workflows that suit 

different aims. Proteins can be separated by 2DE, protein(s) of interest is 

excised, digested with trypsin and subjected to MS analysis (Voss et al., 2001, 

Perrot et al., 2011, Boyd et al., 2003, Cochran et al., 2003). Another option is 

to resolve proteins by 1DE, excise gel bands followed by trypsin digestion, 

separate the peptide mixtures on LC and carry out MS/MS analysis (Perrot et 

al., 2011, Boyd et al., 2003). This workflow is called (GeLC-MS or 1DE-LC 

and MS/MS) which is likely to achieve more proteome coverage in a given 

sample compared with the 2DE-MS approach (Brewis and Brennan, 2010). In 
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a different workflow, which does not include the use of gels, solubilised 

proteins are trypsin-digested and resolved by LC and subjected to MS/MS 

analysis (Barnidge et al., 2005a). In the proteomics field 2DLC using IEXC 

and RPC has become more popular as it more effectively separates peptide 

mixtures than 1DLC using RP alone (Westermeier et al., 2008, Yates et al., 

2009). These different workflows are complementary as each one of them 

may reveal unique proteins (Brewis and Brennan, 2010). Figure 1.3 shows a 

schematic of a gel-free proteomics workflow. 

 

1.2.6 Quantitative proteomics  

 Assessment of the relative abundance of proteins on a large 

scale has the potential to gain insights into normal cellular function and 

disease pathology (Twyman, 2004). There are a number of strategies that 

may be used to perform relative quantification of proteins on a global scale 

with mass spectrometry being the central platform. They may be divided into 

label-based quantitative proteomics and label free quantitative proteomics 

(Nakamura and Oda, 2007). In the latter, relative quantification of proteins is 

assessed using the peak intensity or spectral counting of peptide(s) that 

belong to one protein (Zhu et al., 2010). In principle peptide concentration 

strongly correlates with the intensity of its spectral peak intensity (Chelius and 

Bondarenko, 2002). Likewise, the more protein present the more peptide can 

result from trypsin digestion, which in turn increases the spectral count (Liu et 

al., 2004). 
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Local structure analysis:

Classicaly, the protein structures are describing as a succession of helices and strands connected by "random"

coil,  the  loops.  This  simplifaction  of  the  3D protein  structures  is  called  the secondary  structures  (or  2D

sequence). In 1953 and in an impressive series of 7 consecutive papers, Pauling and Corey had proposed few

potential interesting local folds. Some are become famous as the alpha-helix or the beta-sheet, some were

never  found  in  a  biological  protein  structures  like  the  gamma-helix.

Figure 1: Some of the possible description of protein structures using a local approach.

Protein structures are classically described as composed of two regular states, the !-helices and the "-stra
nds

and one non-regular and variable state, the coil. Nonetheless, this simple definition of secondary structures

hides  numerous  limitations.  In  fact,  the  rules  for  secondary  structure  assignment  are  complex.  Thus,

numerous  assignment  methods  based  on  different  criteria  have  emerged  leading  to  heterogeneous  and

diverging results. In the same way, 3 states may over-simplify the description of protein structure; 50% of all

residues, i.e., the coil, are not genuinely described even when it encompass precise local protein structures.

Description  of  local  protein  structures  have  hence  focused  on  the  elaboration  of  complete  sets  of  small

prototypes or "stru
ctural alphabets", able to analyze local protein structures and to approximate every part of

the protein backbone. They have also been used to predict the protein backbone conformation and in ab initio

/ de novo methods. In the following pages, different approaches towards the description of local structures are

presented,  mainly  through  their  description  in  terms  of  secondary  structures  and  in  terms  of  structural

alphabets. Some insights into their potential applications are presented.

       1- Introduction

       2- helicoidal states.

       3- extended states.

:: Local structure analysis ::
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 The other type of quantitative proteomics is based on the use of 

a mass label. While label free quantitative proteomics reveal more proteome 

coverage compared with label-based quantitative proteomics, the latter 

provide more accurate quantitative data than the former (Bantscheff et al., 

2007). Of the mass label-based quantitative proteomics, iostope-coded affinity 

tags (ICAT) was introduced by Gygi et al., (1999a). ICAT comprises two tags 

that specifically bind to cysteine residues. One sample is labelled with the 

heavy tag and the other is labelled with the light tag. Labelled samples are 

pooled and digested. In the MS mode, peptides of the sample labelled with 

the heavy tag are distinguishable from peptides of the sample labelled with 

light tag by an increase in their mass by 8 Da (Gygi et al., 1999a). With ICAT, 

two samples can be labelled and it is only peptides containing cysteine that 

can be used to measure protein relative abundance (Gygi et al., 1999a). 

 

 Another approach of label-based quantitative proteomics is 

stable isotope labeling by amino acids in cell culture (SILAC) (Ong et al., 

2002). In SILAC cells are cultured in a medium that contains isotopically 

labeled amino acids such as deuterated leucine. Cultured cells incorporate the 

deuterated leucine in the newly synthesised proteins. Cell lysate of the 

labelled sample is mixed with cell lystate of a control sample and subjected to 

protein digestion. This leads to an increase in the peptide masses of the 

labelled sample over non-labelled sample at the MS level. Other more 

commonly used labelled amino acids include lysine and arginine as one of 

them should be in the C-terminal of peptides that result from protein digestion 
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with trypsin (Yan and Chen, 2005). SILAC is suitable to label proteins of cells 

that can be readily grown in cell culture. The maximum number of samples 

that can be spontaneously studied using this approach is three (unlabeled, 

13C6, and 13C6
15N4-labeled amino acids) (Bantscheff et al., 2007).  

 

 Another elegant strategy of mass label-based quantitative 

proteomics is Isobaric tags for relative and absolute quantitation (iTRAQ) 

demonstrated by Ross et al, (2004). The iTRAQ reagents consist of three 

components; a peptide reactive group which binds to the N-terminal of a 

peptide and to the side amino group of lysine, a balance group with mass 

ranges from 28 to 31 Da and a reporter group with mass ranges from 114 to 

117 Da (Figure 1.4A). There are four different iTRAQ reagents, which are 

named after their reporter mass; 114, 115, 116 and 117. These four reagents 

were designed so that they have the same mass and thus their influence on 

the mass of labelled peptides is the same. However, upon MS/MS 

fragmentation of pooled labelled samples the reporter group is fragmented 

from the iTRAQ reagents and detected at low m/z values; 114, 115, 116 and 

117. The intensity of the reporter represents the relative abundance of the 

peptide in the sample (Figure 1.4B, C, D and E) (Ross et al., 2004). The 

iTRAQ strategy is the approach most widely used, particularly for samples 

that are difficult or can not be grown in cell culture. The method can label four 

samples spontaneously using the 4-plex iTRAQ reagents, or up to eight 

samples using the 8-plex iTRAQ reagents (114-121) (Nakamura and Oda, 

2007). 



(A)!

Reporter Group mass 
114-117 (Retains charge)!

Isobaric Tag!
Total mass = 145!

Balance Group!
Mass 31-28 (Neutral loss)!

MS/MS  fragmentation!

Isobaric Tag!
Total mass = 145!

(C)!

114! 115! 116! 117!
m/z ratio!
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tifi
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Data analysis!

(D)! (E)!

Amine specific 
peptide reactive 
group (NHS)!

114! 115! 116! 117!

(B)!

Figure 1.4: Quantitative proteomics using the iTRAQ approach. The 

structure of iTRAQ reagents is shown in (A). Labelling of four biological 
samples with 4-plex iTRAQ reagents (B) followed by multiplexing them into 

one tube (C). Following LC separation and MS analysis the iTRAQ reporter is 
cleaved upon MS/MS fragmentation (D) and recorded in the MS/MS spectra at 

the low m/z ratio (E). The intensity of the reporter represents the relative 

abundance of the peptide in the sample. Adapted from (Ross et al., 2004).!
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1.3 CLL proteomics 

   Seven studies using different proteomics approaches have been 

conducted on CLL samples (Table 1.4). Each of these studies will be 

discussed in turn.  One group used 2DE-MS to study protein expression in a 

whole cell lysate of primary CLL cells from 24 patients with poor prognosis or 

with good prognosis, based on chromosomal aberrations (Voss et al., 2001). 

This study identified 17 proteins with altered expression on the basis of 

chromosomal abnormalities or patient survival rates.  For instance, it was 

observed that high expression of heat shock protein 27 (HSP27), which is an 

apoptosis inhibitor, was associated with CLL cells from patients with 

chromosomal abnormality 11q and 17p compared to 13q. In addition, it was 

shown that the reduced expression of thioredoxin peroxidase 2 and protein 

disulfide isomerase might predict low survival in CLL patients. The altered 

expression of HSP27 was validated using western blotting and antibody 

detection in four CLL samples with 11q, six samples with 13q and five 

samples with 17p. The analysis confirmed high expression of this protein in 

11q and 17p CLL samples compared to 13q CLL samples. 

 

! ! Cochran et al., (2003) used 2DE-MS to investigate protein 

expression in complete cell lysates from six U-CLL versus six M-CLL samples. 

This study reported an altered expression of proteins linked to organisation 

and activation of the cytoskeleton in U-CLL compared to M-CLL, for example, 

F-actin-capping protein beta subunit and laminin-binding protein precursor. 

Furthermore, nucleophosmin, which enhances p53 stability and function, was 
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not detected in U-CLL samples but was present in M-CLL samples. The same 

study also used the same samples to compare the proteome of five CD38+ 

CLL samples to that of seven CD38− CLL samples. However, this comparison 

did not show statistically significant differences between CD38+ CLL and 

CD38– CLL in terms of protein expression. 

 

   Barnidge et al., (2005) used cleavable ICAT (cICAT) coupled 

with 1DLC-MS/MS to seek deferentially expressed proteins in cytosolic and 

membrane fractions generated form one U-CLL sample and one M-CLL 

sample. This study reported 326 proteins in cytosolic extracts and 212 

proteins in membrane extracts. However, it was not specified whether the total 

number of proteins (538) included redundant proteins that were detected in 

both fractions. The identification of these proteins was based on one or more 

peptides, yet the authors did not mention how many proteins were detected 

with multiple or single peptides and did not conduct false discovery rate (FDR) 

analysis to indicate proteins that might have been falsely identified. Hence it is 

not possible to fully ascertain the quality of the dataset. Of the reported 

proteins, 13 were shown with altered expression in the two types of CLL 

samples. Of these proteins, acidic leucine-rich nuclear phosphoprotein 32 

family member A (A32A) and cytochrome c oxidise subunit 6B1 (COXG) were 

selected for validation in six U-CLL and six M-CLL using western blotting and 

antibody detection. The validation data were consistent with the quantitative 

proteomics data only for COXG, which was reduced in U-CLL compared to M-
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CLL. This study did not link the different expression of COXG with the different 

disease outcomes associated with U-CLL and M-CLL.!

!

! ! ! Perrot et al., (2011) used 2D differential gel electrophoresis (2D-

DIGE) and MALDI-TOF MS as well as 1D LC and tandem mass spectrometry 

to explore the different protein expression in complete protein extracts from 

three U-CLL samples versus three M-CLL samples. In addition, this study 

investigated the effect of BCR stimulation on the proteome of the six CLL 

samples. Thirty one proteins showed altered expression in this study. Of 

these proteins five exhibited differential expression in U-CLL compared with 

M-CLL without BCR stimulation. Consistent with gene expression profile 

studies, which showed that the BCR stimulation response is almost limited to 

U-CLL cells (Guarini et al., 2008, Quiroga et al., 2009), this study reported that 

25 proteins demonstrated altered expression in U-CLL samples following BCR 

stimulation. However, only six proteins showed a change in their expression in 

M-CLL samples upon BCR stimulation. Of the 25 proteins, the altered 

expression of programmed cell death protein 4 (PDCD4), which is a tumor 

suppressor protein, and UV excision repair protein (RAD23B), which is a 

protein involved in DNA repair and activation and function of p53, were 

validated in 11 CLL samples using western blotting and antibody detection. 

The validation data consistently with the quantitative proteomics data showed 

that the expression of these two proteins was dramatically reduced upon 

stimulation of BCR in U-CLL samples.  
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 In an attempt to identify surface proteins that may improve the 

diagnosis of mantle cell lymphoma (MCL), small cell lymphoma (SLL) and 

CLL, Miguet et al., (2009) used 1DE-1DLC and MS/MS to analyse plasma 

membrane proteins of the three types of B-cell malignancy (one sample for 

each type of the malignant B-cells). This study identified 579 non-redundant 

proteins in these three types of B-cell malignancy, of which 371 were 

detected in the CLL sample. The identification of these proteins was based 

on multiple or single peptides. The FDR was less than 1% for both types of 

identification, whilst the number of proteins that were identified with multiple 

or single peptides was not shown. Of the 597 proteins, 33 showed possible 

preferential expression in MCL sample.  Of these proteins, CD148 was 

further studied in 158 patient samples and 30 control samples from healthy 

donors using flow cytometry. The analysis showed higher expression of 

CD148 in MCL compared to CLL and SLL and the authors suggested that 

high expression of CD184 may exclude the diagnosis of CLL and SLL and 

probably indicate a diagnosis of MCL. 

 

   Based on the potential importance of surface proteins as 

prognostic or/and therapeutic targets in CLL, Boyd et al., (2003) used 1DE-

MS as well as 1DE, 1DLC and MS/MS to analyse plasma membrane protein 

fractions from CLL samples. This study identified 500 proteins using multiple 

or single peptides. Data about FDR analysis and the number of proteins that 

were identified with either multiple or single peptides were not reported in this 

study. Of the 500 proteins, 48% were membrane-associated proteins, 
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reflecting the quality of sample preparation for membrane proteins. 

Importantly, this study described novel proteins such as MIG2B and B-cell 

Novel Protein1 (BCNP1). The transcripts of these two proteins were found to 

be highly expressed in B-cell malignancies and were restricted to B-cells 

containing tissues such as lymph node and spleen. 

 

   Barnidge et al., (2005b) used 2DLC-MS/MS to characterise the 

proteome of crude membrane extracts of CLL samples. This study reported 

the largest number of identified proteins, 695, in CLL samples. The 

identification of these proteins was carried out using multiple or single 

peptides. However, no data about FDR analysis or the number of proteins that 

were identified with multiple or single peptides were shown in this study.  
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1.4 Justifications of this study 

   The majority of the CLL proteomics studies, which sought altered 

protein expression in poor prognosis CLL compared with good prognosis CLL, 

used gel-based proteomics approaches (Voss et al., 2001, Cochran et al., 

2003, Perrot et al., 2011). In contrast, only one CLL proteomics study, which 

explored protein expression in one U-CLL sample versus one M-CLL sample, 

used a gel free proteomics approach (Barnidge et al., 2005a). Although these 

proteomics approaches have their advantages and disadvantages, it is easier 

to identify larger numbers of proteins using gel free proteomics approachs 

(Monteoliva and Albar, 2004). This was the justification to use a gel-free 

proteomics approach, in my project, to study 12 primary CLL samples in order 

to identify proteins with potential relevance to CLL.  

 

   As mentioned earlier, reducing sample complexity, such as by 

performing cellular fractionation, is key to a successful proteomics study 

(section 1.2.2). Of the CLL proteomics studies, which were performed on poor 

and good prognosis CLL, the majority (3/4) used complete cell lysates (Voss 

et al., 2001, Cochran et al., 2003, Perrot et al., 2011). In fact, only one study 

used two different protein extracts (cytosol and membrane) to explore protein 

expression in two CLL samples (U-CLL versus M-CLL)  (Barnidge et al., 

2005a). In this project an effort was made to subject as many proteins as 

possible from CLL samples to proteomics analyses by attempting to minimise 

the sample complexity. This was done by using a fractionation method that 

was developed in my study to generate two different fractions from CLL 
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samples. As this method was developed on the basis of using different 

detergents it had the great potential to solubilise more CLL proteins. 

 

   Several prognostic makers have been used to help predict the 

outcome of CLL (section 1.1.5). However, the majority of CLL proteomics 

studies, which compared the proteome the two forms of CLL, mainly used the 

mutational status of IGVH to discriminate between poor prognosis and good 

prognosis of CLL (Cochran et al., 2003,!Barnidge et al., 2005a, Perrot et al., 

2011). In fact, only one CLL proteomics study used chromosomal aberration 

and patient survival to distinguish between poor prognosis CLL and good 

prognosis CLL (Voss, et al., 2001). My project was designed to study protein 

expression in poor prognosis and good prognosis CLL on the basis of CD38 

expression. However, further analyses of protein expression in poor prognosis 

and good prognosis CLL based on other commonly used prognostic markers 

were also conducted. 
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1.5 Hypothesis and aims of this project 

   Given that proteins are the main functional molecules in a living 

cell, the rationale of this project was that the heterogeneous outcome of CLL 

may be driven by aberrant expression of proteins in poor prognosis CLL 

compared with good prognosis CLL cells. Therefore, this project aimed to 

identify these proteins using different proteomics apporaches. To achieve this 

four major steps were required to be conducted: 

 

1- Develop a cellular fractionation method that enables the extraction of 

as many cellular proteins from primary CLL cells as possible and 

keeps sample complexity reduced. 

2- Perform a gel-free qualitative proteomics analysis to allow the 

identification of proteins in the protein fractions generated from CLL 

patient samples. 

3- Perform gel-free quantitative proteomics studies that enable the 

relative quantification of proteins in the generated protein extracts 

from primary CLL samples in order to compare the proteome of poor 

prognosis CLL samples with the proteome of good prognosis CLL 

samples. 

4- Use an antibody-based approach to validate and further investigate 

proteins identified by proteomics with potential importance in CLL in 

an additional cohort of CLL patient samples. 
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2.1 Cell isolation  

2.1.1 Isolation of mononuclear cells from peripheral blood 

samples of CLL patients!

 Peripheral blood samples from CLL patients were obtained in 

accordance with the ethical approval obtained from South East Wales 

Research Ethics Committee (02/4806). Separation of peripheral mononuclear 

blood cells was conducted using a previously described method (Pepper et al., 

1999).  Blood samples were gently shaken, transferred to 15ml tubes and 

diluted with an equal volume of phosphate-buffered saline (PBS; 0.01M 

phosphate buffer, 2.7mM KCl, 137mM NaCl). Syringes were used to slowly 

add 4ml Ficoll to the bottom of the tubes of each sample. Samples were 

carefully put in a centrifuge for a spin at 280xg for 20 min without use of the 

brake at the end of the run. Following centrifugation, each sample was 

separated into 4 layers organized from the top to the bottom of the tube as 

follows:  plasma, mononuclear cells, Ficoll and finally red blood cells with 

granulocytes. A plastic pipette was used to transfer the mononuclear cell layer 

to a new 15ml tube, which was topped up with PBS. Samples were then spun 

at 280xg for 5 min. The supernatant (wash) was discarded and the cell pellet 

was re-suspended for 15-30 seconds with 3 ml sterile water to lyse 

contaminating red blood cells. The sample was topped up with PBS followed 

by centrifugation at 280xg for 5 min. The supernatant (wash) was then 

discarded and the cellular pellet was re-suspended with an amount of PBS 

proportional to its size. To assess the cell count, a small aliquot (60µl) from 

each sample was diluted with 540µl PBS and applied to a Vi-cell XR cell 
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counter (Beckman Coulter). Figure 2.1 shows the schematic of mononuclear 

cell isolation from peripheral blood samples of CLL patients. 

 

2.1.2 Depletion of T-cells from the isolated peripheral blood 

mononuclear cells of CLL patients 

 To increase the purity of CLL cells, T-cells were depleted using 

the method and reagent provided with the CD3-magnetic beads (Invitrogen: 

111-51D) from CLL samples with CD19 <95%. Peripheral blood mononuclear 

cells of CLL patients in 15ml tubes were re-suspended in 5ml PBS and were 

mixed with an appropriate amount of magnetic beads (75μl beads/1×107 cells). 

The beads were coated with a primary monoclonal antibody specific for the 

CD3 membrane antigen and thus they specifically bind to T-cells. Each 

sample was then incubated on a roller for 20 min at 4°C. After that, the 

sample was placed next to a magnet for 2 min at room temperature. A plastic 

pipette was used to transfer the cell suspension to a new 15ml tube without 

touching the bead-bound cells that were stuck to the wall of the tube. A small 

aliquot of sample from which T-cells were depleted were examined for CD19 

expression using flow cytometry following staining with anti-CD19 antibody 

conjugated to allophycocyanin (Invitrogen: MHCF1905). Figure 2.2 shows a 

schematic of T-cell depletion from CLL samples. 



Whole blood sample from !
CLL patient!

Addition of Ficoll-Histopaque !
In the bottom of the tube !

Centrifugation for 20min !
at 2000 RPM (no brake)  !

Plasma!

Mononuclear cells!

Ficoll-Histopaque !

Erythrocytes and granulocytes !

Figure 2.1: Schematic of the isolation of mononuclear cells from a whole 

blood sample of CLL patient using Ficoll. !
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CLL sample: CD19 < 95%!

Addition of!
Dynabeads CD3 !

Dynabeads bind to target cells (CD3+ T cells)!

Applying the magnet !

Dynbead-bound cells are separated by magnet!

Negatively isolated CD3– cells!

CLL sample: CD19 ≥ 95%!

Figure 2.2: Schematic of T-cell depletion from CLL samples.!
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2.1.3  Isolation of mononuclear cells from buffy coat samples of!

 healthy donors!

 Buffy coat samples from healthy volunteers were obtained from 

the Welsh Blood Service. 70ml buffy coat was transferred to a 200ml flask and 

diluted with 50ml PBS followed by gentle mixing. The sample (120ml) was 

then transferred into three 50ml tubes (35ml for each tube). Syringes were 

used to slowly dispense 15ml Ficoll into the bottom of each tube, which were 

spun at 280xg for 20 min without use of the brake at the end of the run. A 

plastic pipette was used to transfer the mononuclear cells layer from each 

tube to one new 50ml tube, which was topped up with PBS and spun at 280xg 

for 5 min. The supernatant was discarded and the pellet was re-suspended in 

45ml PBS followed by centrifugation at 280xg for 5 min. The pellet was re-

suspended in 3ml sterile water for 15-30 seconds and topped up with PBS 

followed by centrifugation at 280xg for 5 min. This step was performed twice. 

The cell pellet was then re-suspended in PBS. To assess the cell count, a 

small aliquot (60 μl) from the cell suspension was diluted with 540 μl PBS and 

applied to a Vi-cell XR cell counter (Beckman Coulter). 

 

2.1.4 Positive isolation of B-cells from peripheral blood 

mononuclear cells of healthy individuals  

 Positive isolation of B-cells from the separated peripheral blood 

mononuclear cells of healthy individuals was performed according to the 

instructions provided with the CD19-magnetic beads (Invitrogen: 111.34D). 

These beads are coated with a primary monoclonal antibody specific to the 
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CD19 membrane-bound antigen and thus they specifically bind to B-cells. 

Peripheral blood mononuclear cells in a 15ml tube were re-suspended with 

5ml PBS and mixed with an appropriate amount of the beads (100μl 

beads/1×107 target cells). The sample was then incubated on a roller for 20 

min at 4°C. After that, the sample was placed on a magnet for 2 min at room 

temperature. A plastic pipette was used to transfer the cell suspension 

containing the PBMCs to a new 15ml tube. This was done without touching 

the bead-bound cells that were stuck to the wall of the tube. To wash the 

bead-bound cells, the tube containing them was removed from the magnet 

and they were re-suspended with PBS (1ml/1×107 beads) and placed back on 

the magnet for 2 min. Then the supernatant was discarded using a plastic 

pipette. The washing step was performed 4 times. The bead-bound cells were 

kept and denoted B-cell. Figure 2.3 shows a schematic of B-cells isolation 

from peripheral blood mononuclear cells. 

 

2.1.5 Detaching the magnetic beads from positively isolated B-

cells 

 The magnetic beads with the primary antibody were detached 

from the positively isolated B-cells using the protocol and reagent provided 

with the detaching reagent, DETACHaBEADS CD19 (Invitrogen: 125.06D). 

Bead-bound cells in a 15ml tube, were re-suspended with an appropriate 

amount of PBS (1ml PBS/100μl beads) and were mixed with the detaching 

reagent (40μl detaching reagent per 1ml sample). The sample was then 

incubated on a roller for 45 min at 4°C. After that, the sample was mixed with 



Addition of Dynabeads CD19 !

Applying the magnet !

Dynbead-bound cells are separated by magnet!

Figure 2.3: Schematic of B-cell isolation from peripheral blood 

mononuclear cells.!

PBMNCs!

CD19 Dynabeads bind to target cells  (CD19+ cells)!

Positive  isolation of  CD19+ cells (B-cells)!

Isolated Dynabeads bound cells (B-cells)!
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a pipette and placed on a magnet for 2 min at room temperature. The 

supernatant containing the released cells was transferred using a plastic 

pipette to a new 15ml tube and mixed with 10ml PBS followed by 

centrifugation at 280xg for 5 min. A schematic of detaching the magnetic 

beads from positively isolated B-cells is shown in Figure 2.4. 

 

 Following separation of mononuclear cells from peripheral blood 

samples of CLL patients with or without T-cell depletion, CLL samples (CD19 

≥95%) were pelleted and frosen on dry ice for 10-20 min and stored at -80°C 

for subsequent experiments. Likewise, isolated B-cells and PBMCs from buffy 

coat samples of healthy donors were pelleted and frosen on dry ice for 10-20 

min and stored at –80°C for subsequent experiments. 

 

2.2 Flow cytometry analysis 

2.2.1 Surface staining of the isolated mononuclear cells  

 To assess the surface expression of CD19 on the mononuclear 

cells as well as the surface expression of CD38 on CD19 positive cells, two 

aliquots (3x 105 cells) from each sample were transferred to two FACS tubes 

and topped up to 100μl with PBS. One aliquot was stained with 4μl anti-CD19 

antibody conjugated to allophycocyanin (APC) (Invitrogen: MHCF1905) and 

4μl anti-CD38 antibody conjugated to Phycoerythrin (PE) (R&D system: 

FAB2404P). Samples were kept in the dark at room temperature for 10 min. 

Then 3ml PBS was added to each tube followed by centrifugation at 280xg for 

5 min. The supernatant was tipped off and the pellets were re-suspended with  



Figure 2.4: Schematic of detaching the magnet beads from positively 

isolated B-cells.!

Isolated Dynabeads bound cells (B-cells)!

Addition of DETACHaBEAD CD19 reagent!

CD19 Dynabeads are detached from CD19+ cells (B-cells)!

Applying the magnet !

CD19+ cells (B-cells) were transferred to a new tube!

Detached CD19+ cells (B-cells)!

CD19 Dynabeads were stuck on the tube wall!
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200μl 1% (w/v) paraformaldehyde. For each patient there were two tubes: a 

test tube containing the antibodies and a control tube containing no antibodies. 

Samples were analysed by an Accuri C6 cytometer. CD19 expression was 

measured through fluorescence channel 4, while CD38 expression was 

assessed through fluorescence channel 2. 

!

2.2.2 Apoptosis assay  

 The viability of isolated cells was assessed as described by the 

Annexin V apoptosis assay kit (eBiosceience, BMS500FI/300CE). 5 x 105 

cells from each sample were re-suspended with 200μl binding buffer (1X). For 

early apoptosis detection, 4μl Annexin V-FITC was added to each sample 

followed by gentle shaking and incubation at room temperature for 10 min. For 

late apoptosis detection 10μl Propidium Iodide (PI) was added to each sample 

prior to analysis by an Accuri C6 cytometer. Annexin V-FITC was measured 

through fluorescence channel 1, whereas PI was determined via fluorescence 

channel 2. !

 

2.3 Cellular fractionation 

 Initially, a cellular fractionation method described by Brennan et 

al., (2008) was developed to generate three different protein fractions from 

primary CLL cells. Frozen CLL cells were thawed and then incubated with 

0.5ml of hypotonic buffer (10mM triethylammonium bicarbonate, 1.5mM MgCl2 

and 10mM KCl) supplemented with 1mM phenylmethanesulfonylfluoride and 

0.1% (v/v) Nonidet P40 detergent for 15 min on ice. Samples were then 



! &%!

centrifuged (10,000xg) for 5 min at 4°C. The supernatant was removed and 

denoted the “NP40 fraction”. It typically contained cytosolic proteins. The 

resulting pellet was washed twice with 1ml hypotonic buffer followed by 

centrifugation. The washed pellet was re-suspended in 0.2ml of High Salt 

Buffer (20mM triethylammonium bicarbonate, 420mM NaCl, 1.5mM MgCl2, 

25% glycerol (v/v)) supplemented with 1mM phenylmethanesulfonylfluoride for 

30 min on ice. Samples were then centrifuged (10,000xg) for 5 min at 4°C. 

The supernatant was retrieved and labelled as the “High Salt Buffer (HSB) 

fraction”. The High Salt buffer fraction typically contained nuclear proteins, 

including some transcription factors. The resultant pellet was washed twice 

with 1 ml hypotonic buffer followed by centrifugation. As a final step the 

cellular pellet was then solubilised in 0.2ml 1% (w/v) Sodium dodecyl sulphate 

(SDS) solution, heated for 20 min at 90°C and then sonicated; this fraction 

was labelled as the “SDS fraction”. It also contained nuclear proteins and 

other relatively insoluble proteins. As part of the development of our 

fractionation method, the High Salt buffer step was subsequently omitted from 

the workflow. 

 

2.4 Protein assay  

 Protein concentrations were determined using the instructions 

and reagents provided with the bicinchoninic acid protein assay kit (Sigma, 

BCA1 and B 9643). Using a 96-well plate, 25μl triplicates of a serial dilution of 

bovine serum albumin (BSA: 0.17-1.00 mg/ml) and 25μl duplicate of protein 

extracts from CLL cells were mixed with 200μl of the BCA working reagent (50 
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parts of reagent A with 1 part of reagent B). The plate was covered with a 

plastic sheet and incubated at 37°C for 30 min and read by an ELISA plate 

reader at 570nm. Then the average absorbance of each triplicate BSA serial 

dilution and sample duplicate was calculated. After this, a standard curve was 

generated by plotting the concentrations of the BSA against their absorbance 

at 570nm and was used to calculate the protein concentration of samples 

tested based on their absorbance.  

 

2.5 Protein detection 

2.5.1 One dimensional-electrophoresis (1DE) 

 Separation of proteins by 1DE was performed using the 

instructions and reagents of the NuPAGE electrophoresis system (Invitrogen, 

IM-1001). Protein extracted from CLL cells was mixed with NuPAGE LDS 

(Lithium Dodecyl Sulfate) sample buffer (4X) and NuPAGE reducing agent 

(10X) using the following formula: 6.5μl protein + 2.5μl NuPAGE LDS sample 

buffer (4X) + 1μl NuPAGE reducing agent (10X). The mixture was heated at 

70°C for 10 min and spun for 30 seconds. An XCell SureLock Mini-Gel 

(Invitrogen: EI0001) was set up followed by loading the prepared samples into 

pre-made NuPAGE 4-12% Bistros Zoom gels (Invitrogen, NP0321BOX). 

Samples were separated using NuPAGE MOPS (3-(N-morpholino) 

propanesulfonic acid) SDS running buffer for 55 min at a constant 200 Volts. 

Pre-stained molecular weight markers (Seeblue, Invitrogen: LC5925) were 

also resolved in the same gel to indicate the size of the separated proteins. 

Some samples were resolved on a gel for protein visualisation by colloidal 
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Coomassie blue stain, while other samples were separated in a gel for 

specific protein detection using western blotting and antibody detection. 

 

2.5.2 Staining with colloidal coomassie blue  

 Extracted proteins from CLL cells that were resolved in a gel 

were visualised using the instructions and reagents provided in the colloidal 

coomassie Bbue staining kit (Invitrogen: LC6025). The gel was fixed in a fixing 

solution (40ml deionised water, 50ml methanol and 10ml acetic acid) for 10 

min on a shaker at room temperature. Then the gel was transferred and 

immersed in staining solution (55ml deionised water, 20ml methanol and 20ml 

strainer A) for 10 min on a shaker at room temperature. Then 5ml strainer B 

was added to the staining solution. The gel was left overnight in the staining 

solution on a shaker at room temperature. After that, the gel was washed with 

200ml deionized water until the background of the gel was clear. The gel was 

scanned for further analysis. 

 

2.5.3 Western blotting and antibody detection  

 Using the instructions and the equipment provided with the XCell 

II Blot module (Invitrogen, EI9051), proteins resolved in a gel were transferred 

to Polyvinylidene fluoride membrane (PVDF, GE Healthcare: RPN303FP) in 

NuPAGE transfer buffer (1X) (Invitrogen: NP0006) with 10% (v/v) methanol by 

electroblotting for 90 min at 30 V and 170 A. Upon completion of the transfer 

step, the membrane was quickly washed with PBS-Tween20 and blocked with 

a blocking buffer (0.2% (w/v) I-Block, 0.1% (v/v) Tween-20 and 0.4% (w/v) 
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sodium azide) for 2 hours on a shaker at room temperature. The blocked 

membrane was incubated with diluted primary antibodies of interest overnight 

on a shaker at 4°C. Next, the membrane was washed three times with PBS-

Tween20 for 15 min on a shaker at room temperature. Then the membrane 

was incubated with diluted secondary antibody for one hour on a shaker at 

room temperature. The membrane was then washed 3 times with PBS-

Tween20 as before and was incubated with Alkaline Phosphatase (AP) buffer 

for 5 minutes. After that, the membrane was placed on a plastic sheet and 

was covered with 500μl chemiluminscence substrate (TROPIX, CDP-Star-

Manufacture). Then the membrane was exposed to light sensitive 

photographic film (Kodak Scientific Imaging Film) for different periods of time. 

Finally films were developed using a developer machine. The developed film 

was then scanned for further analysis.  

 

2.5.4 Antibodies 

 Antibodies against nine proteins were purchased and were used 

as shown in Table 2.1. Secondary antibodies were used at dilution of 1/10000. 

 

Table 1.2: The primary antibodies that were used for protein detection in 

this project. 

Protein Concentration 

or dilution 

Catalogue 

Number 

Company 

Poly-(ADP)ribose 

polymerase 

200ng/ml sc-7150 Santa Cruz 

Biotechnology 
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Protein S100A8 1/1000 dilution sc-7150 Santa Cruz 

Biotechnology 

Tubulin 1/1000 dilution T-9026 Sigma 

Actin* 1/1000 dilution A-2066 Sigma 

Myosin-9 1/1000 dilution 10341-2B3 Sigma 

T-cell leukaemia/lymphoma 

protein 1A 

1/1000 dilution 39-4800 Invitrogen 

Thyroid hormone receptor-

associated protein 3* 

1/1000 dilution ab71985 Abcam 

Heterochromatin protein 1-

binding protein 3* 

1/1000 dilution ab98894 Abcam 

Histone H4 0.5/1000 dilution ab31830 Abcam 

 

The antibodies shown in this table were either mouse or rabit monoclonal 

antibodies. Antibody labled with (*) were polyclonal antibodies. Dilution 

1/1000: 1µg/ml 

 

2.6 Proteomics analysis 

2.6.1 Preparation of reference samples for quantitative 

proteomics analysis  

 An NP40 fraction of one CLL sample was used as a reference 

sample for the relative quantification of proteins in the NP40 fractions of the 

examined CLL samples. In the course of optimising the quantitative 

proteomics workflow, the SDS reference sample was prepared by mixing an 
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equivalent amount of protein (20µg) from the SDS fraction of the 12 CLL 

samples (six poor prognosis CLL samples and six good prognosis CLL 

samples). This SDS reference sample was used to assess the relative 

quantification of proteins in the SDS fractions of the CLL samples. 

 

2.6.2 Protein precipitation   

 Protein extracted from CLL cells (NP40 and SDS fractions) were 

precipitated separately using the method and reagents provided in the 2D 

Clean Up kit (GE Healthcare). Equivalent amounts of protein (20µg) from CLL 

samples were transferred to new 1.5ml tubes and mixed with 300μl precipitant 

and incubated on ice for 15 min. Then 300μl co-precipitant was added to each 

sample followed by mixing and centrifugation at 12000xg for 5 min. The 

supernatant was removed and the pellet was covered with 40μl co-precipitant 

and incubated on ice for 5 min. Then samples were centrifuged as before and 

the supernatant was discarded. The pellet in each sample was then mixed 

and vortexed with 25μl deionised water. Then 1ml pre-chilled wash buffer and 

5μl wash adaptive were added to each sample. Samples were incubated in 

ice for 30 min and vortexed every 10 min. After this, samples were centrifuged 

as before and the supernatant was removed and the protein precipitant was 

re-suspended in 20µml of 20mM triethylammonium bicarbonate (TEAB) and 

kept for downstream experiments.  
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2.6.3  Protein digestion and iTRAQ labelling  

 Following protein precipitation, proteins were digested with 

trypsin (for qualitative proteomics analyses) or trypsin digested and labelled 

with iTRAQ reagents (for quantitative proteomics analyses) as described in 

the Applied Biosystems iTRAQ reagent multiplex kit. Samples were spun at 

12000xg for 5 min and the supernatant was removed. Protein precipitant was 

resuspended in 20μl of 0.5mM TEAB, denaturated with 1μl 2% (w/v) SDS and 

reduced with 2μl 50mM tris-(2- carboxyethyl) phosphate (TCEP) at 60°C for 1 

hour. Then proteins were alkylated with 1μl 200mM methyl methane-

thiosulfonate (MMTS) in isopropanol for 10 min at room temperature. For 

protein digestion, samples were incubated with 2μl of sequencing grade 

porcine trypsin (Promega) overnight at 37°C. For iTRAQ labelling, 70μl 

ethanol was added to each iTRAQ vial and mixed for 1 min. The content of 

each iTRAQ vial was transferred to one sample. Samples were then 

incubated for 1 hour at room temperature. iTRAQ-labelled samples were 

combined in a new 1.5ml tube and dried down using a vacuum centrifuge 

dryer. Next, the combined sample was re-suspended in 60μl LC loading 

buffer; 2% (v/v) acetonitrile ACN in water with 0.05% (v/v) trifluoroacetic acid 

TFA and an aliquot (15μl) was immediately subjected to 2D nano-LC 

separation while the remaining (45μl) was stored at –20°C. 
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2.6.4 Liquid chromatography (LC) separation of digested  

 proteins 

 Separation of peptides by LC was performed using a two-

dimensional salt plug method that was previously described by (Brennan et al., 

2009, Welton et al., 2010). Following protein digestion and labelling with 

iTRAQ, 15μl of the prepared samples (containing approximately 20μg of 

digested proteins) were loaded into the 2D nano-LC system (UltiMate 30000, 

Dionex). The machine was set to separate 10μl (approximately 13.3μg of 

digested proteins). Peptides were firstly separated on a strong cation 

exchange column (Bio-SCX, 500mm, 15mm, 5mm, Dionex) in a step-wise 

elution using increasing concentrations of NaCl (breakthrough, 100mM, 

200mM, 400mM, 800mM, and 1M). Each salt fraction was desalted on a 

reverse phase desalting column and subsequently further separated on 

reverse phase column (PepMap 75mm id, 15cm, 3mm, 100Å, Dionex) at a 

flow rate of 300nl/ min. Two buffers were used A = 2% (v/v) CAN (Sigma) in 

water with 0.05% (v/v) TFA (sigma) and B = 90% (v/v) ACN in water with 

0.01% (v/v) TFA. Separation of peptides was performed using a three-step 

gradient; the first step was from 5 to 20% solvent B for the first 34 min, the 

second step was from 20% to 50% solvent B for 21 min and the third step was 

from 50% to 90% solvent B for 4 min. A chromatogram was recorded at 

214nm. Separated peptides were spotted onto an LC-MALDI plate (one spot/8 

sec) using a Probot microfraction collector (Dionex). The MALDI matrix α-

Cyano-4-hydroxycinnamic acid (CHCA) (Sigma) was used (2mg/ml in 70% 

(v/v) ACN in 0.1% (v/v) TFA containing 10fmol/ml Glu-Fib (Sigma)) which was 
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continuously added to the column effluent via a µ-tee mixing piece at a flow 

rate of 1.4 ml/min. For each salt fraction there were 255 eluted spots starting 

from the 25th min until the 59th min. The Probot microfraction collector left 

gaps between each salt fraction. There were 109 empty spots between the 

eluted spots of the breakthrough and the eluted spots of the 100mM salt 

fraction. Also upon completion of the 100mM salt run the Probot left 5 empty 

spots and started eluting spots of the next salt fraction. This was the case with 

the rest of the salt fractions. In total there were 1530 spots eluted on the 

MALDI plate from the sample. The plate also contained an additional 8 

calibration spots (matrix, Cal Mix 1 and Cal Mix 2, the volume for each spot 

was 0.5μl). The nano-LC machine was programmed and operated by Dr. 

Sanjay Khanna.  

 

2.6.5 Mass Spectrometry 

 The mass spectrometry analyses were conducted using a 

previously described method (Brennan et al., 2009, Welton et al., 2010). 

Separated peptides on the LC-MALDI plate were subjected to mass 

spectrometry for MS and MS/MS analysis. MS was performed using an 

Applied Biosystems 4800 MALDI TOF/TOF mass spectrometer with a 200Hz 

solid-state laser operating at a wavelength of 355nm. After screening of all 

LC-MALDI sample positions in MS positive reflector mode using 800 laser 

shots (mass range 700–3000Da; focus mass 1400), the fragmentation of up 

to six automatically selected precursors was performed (the most intense ion 

signals per spot position with signal to noise above 30 and the strongest was 
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analysed first). Internal calibration of each spot in the MS was achieved 

against the Glu-Fib added to the matrix. Common trypsin autolysis peaks and 

matrix ion signals and precursors within 300 resolution of each other were 

excluded from the selection. In MS/MS positive ion mode 4000 spectra were 

averaged with 1 kV collision energy (collision gas was air at a pressure of 

1.661026 Torr) and default calibration. The MALDI TOF/TOF MS machine 

was operated by Dr. Keith W Hart.  
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Preparation of primary CLL samples for 

Proteomics Analysis 
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3.1 Introduction 

 To perform a good quality proteomics study, good quality 

samples and sample preparation should be utilized. The aim of this chapter 

was to select CLL samples and develop fractionation method to generate 

different protein fractions from CLL samples for proteomics analysis. This 

chapter explains the criteria for selecting good quality CLL samples as well as 

the processes of isolating CLL cells from the peripheral blood of CLL patients. 

In addition, it describes the processes of developing a good quality and 

reproducible cellular fractionation method that solubilises cellular proteins and 

leaves no obvious cellular debris. 

 

3.1.1 Staining with annexin V and propidium iodide 

 The phospholipid phosphatidylserine (PS) is normally located on 

the inner side of eukaryotic plasma membrane. However, in the early stage of 

apoptosis PS translocates to the outer leaflet of plasma membrane. PS acts 

as a flag for phagocytes to engulf apoptotic cells (Martin et al., 1995). Annexin 

V is a ligand for PS so when annexin V is labelled with a fluorescent molecule 

such as fluorescein isothiocyanate (FITC), it can be used to detect early 

apoptosis. Dead cells or cells in a late stage of apoptosis lose the integrity of 

their plasma membrane allowing a DNA binding dye such as propidium iodide 

(PI) to enter the cell and stain DNA (Ormerod et al., 1993). As a result, mixing 

cells with annexin V and propidium iodide followed by flow cytometry analysis 

can be a powerful tool to discriminate between viable cells and cells 

undergoing early apoptosis or late apoptosis/necrosis.  
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3.1.2 CD38 expression discriminates between CLL patients with 

bad or good prognosis 

 The outcome of CLL is heterogeneous; it can be an aggressive 

disease with rapid progression and short survival time in some patients and 

stable with long survival time in other patients (Hamblin et al, 1999, Rassenti 

et al., 2004, Damle et al., 1999). There are numerous prognostic markers that 

can be used to help predict the outcome of CLL. One example of these is the 

surface antigen CD38 that is expressed at low levels on the CLL cells of 

patients with a stable form of CLL and longer patient survival. In contrast, it is 

often more highly expressed on the CLL cells of patients with an aggressive 

form of the disease (Durig et al., 2002, Pepper et al., 2012). 

 

3.2 Results 

3.2.1 CLL cells 

 To separate CLL cells, Ficoll was used to isolate the layer of 

mononuclear cells containing CLL cells. Although the low-density layer of 

mononuclear cells contains cells other than lymphocytes such as monocytes, 

CLL cells usually predominate since CLL patients often have a profound 

lymphocytosis.  

 

3.2.1.1 Purity of CLL cells for proteomics analysis 

 For accurate proteomics analysis, samples must contain a high 

purity of CLL cells. Although all samples were taken from patients diagnosed 

with CLL, not all the CLL samples collected contained a sufficiently high 
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percentage of CLL cells to warrant inclusion in this study. To determine the 

percentage of CLL cells, cells were stained with an anti-CD19 antibody 

conjugated to allophycocyanin (APC) followed by flow cytometric analysis. A 

gate was drawn around the lymphocyte population as shown in Figure 3.1A 

and CD19 expression was measured on the gated cells using fluorescence 

channel FL4 as demonstrated in Figure 3.1B and 3.1C. If samples contained 

less than 95% CD19 positive B-cells, for example the sample shown in Figure 

3.1C, then negative isolation of CLL cells by depleting T-cells using magnetic 

beads was performed. Figure 3.1D shows an example of the resulting 

increase in purity of CLL cells (the percentage of CD19 positive cells 

increased from 92.3 to 96.5). Only samples with 95% or greater of CD19 

positive B-cells were used for proteomics analyses. 

 

3.2.1.2 Viability of CLL cells 

 After being satisfied with the purity of CLL samples, the next 

criterion to investigate was the viability of CLL cells. In an attempt to eliminate 

irrelevant factors that could contribute to differences in the proteome of the 

poor prognosis and good prognosis CLL samples, all samples utilized had to 

show high cell viability. CLL samples vary in terms of their viability from 

patient to patient. To assess viability, cells were stained with annexin V and 

propidium iodide followed by flow cytometric analysis. A large gate was drawn around 

the lymphocyte population and annexin V on gated cells was measured in 

fluorescence channel FL1, while PI in gated cells was measured in fluorescence 

channel FL2. All CLL samples that were used for proteomics analyses were ≥95% 

viable (Figure 3.2). 



CD19 on the gated cells!

CD19 on the gated cells!

(B)!

(D)!

Figure 3.1: Purity of CLL samples. Following staining of CLL cells with an anti 

CD19 antibody, cells were analysed by flow cytomery. A gate was drawn around 
lymphocytes which appeared on the screen of side scatter and foreward scatter 

(A). Percent of CD19 expression was assessed on the gated cells (B and C). A 
sample with 92.3% CD19 positive cells was subjected to negative isolation by 

depleting T cells using magnetic beads. Negatively isolated cells were stained with 

an anti CD19 antibody and analysed by flow cytometry. Percent of CD19 positive 
cells increased from 92.3 to 96.5 in the negatively isolated cells (D).!

(C)!

CD19 on the gated cells!

(A)!

Depletion of T-
cells using CD3 
magnetic beads!
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Figure 3.2: An example of the viability of CLL cells that were used for 

proteomics analyses. Following isolation of CLL cells from peripheral 
blood samples of CLL patients, cells were stained with with annexin V and 

PI and analysed by flow cytometry. As samples at this stage had high purity 
(≥ 95% CD19 positive cells) a large gate was drawn around all event (dots) 

excluding debris (A). Annexin V and PI were then measured on the gated 

cells. All CLL samples that were used for proteomics analysis were 95% or 
more viable. This figure shows that this sample had 98% viable cells."

PI
"

Annexin V "
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3.2.1.3 Two groups of CLL samples were collected 

 One of the main questions of this PhD project was: what is the 

difference between the favourable form and the unfavourable form of CLL with 

regard to protein expression? CD38 expression was used to discriminate 

between the two forms of CLL. To determine the percentage of CD38 

expression on CLL cells, CLL samples were stained with an APC-labelled 

anti-CD19 antibody and a phycoerythrin (PE)-labelled anti-CD38 antibody 

followed by flow cytometric analysis. Normally T-cells express CD38, so to 

avoid the false result that could be generated from measuring CD38 

expression on T-cells plus B-cells, CD38 expression was measured only on 

the B-cells in CLL patient samples. This was achieved by firstly measuring 

CD19 expression on the lymphocyte population using fluorescence channel 

FL4. Then CD38 expression was specifically measured on CD19 positive cells 

in channel FL2. Two groups of CLL samples were collected: CD38– CLL 

samples (CD38 expression ≤5%) representing the good prognosis form of 

CLL; and CD38+ CLL (CD38 expression ≥40%), representing the aggressive 

form of CLL. Figure 3.3 shows an example of two different CLL samples. 

 



CD19! CD38 on CD19 positive 
cells!

(B)! (I)! (II)! (III)!

Figure 3.3: CD38 expression on CLL samples. Two groups of CLL samples were 

collected; CLL samples with low CD38 expression (≤ 5%) and CLL samples with 
high expression of CD38 (≥ 40%). CLL cells were stained with an anti CD19 

antibody and an anti CD38 antibody followed by flow cytometric analysis. Firstly, 
CD19 expression was determined (A and B; II) and then CD38 expression was 

measured only on CD19 positive cells (B-CLL cells) (A and B; III). Both samples 

were > 95% CD19 positive cells (B cells). Nevertheless, one sample had low CD38 
expression(≤ 5%) (A; III) and was thus considered CD38– CLL sample. The other 

sample had high CD38 expression (≥ 40%) (B; III) and was thus considered CD38+ 
CLL sample.!

CD19!

(A)! (I)! (II)! (III)!

CD38 on CD19 positive 
cells!
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3.2.2  Cellular fractionation of CLL samples 

 One of the most challenging issues in proteomics analysis is the 

difficulty associated with identifying low abundant proteins, which are masked 

by high abundance proteins. Therefore, reducing sample complexity is a key 

to successful proteomics studies. One way of reducing sample complexity is 

by performing fractionation of the sample (Ahmed, 2009, Huber et al., 2003, 

Yates et al., 2005).  

 

3.2.2.1 Development of three-step cellular fractionation method 

 A two-step cellular fractionation procedure using 0.1% (w/v) 

NP40 to isolate the cytosolic fraction followed by high salt buffer (HSB) to 

extract nuclear proteins from B-cells has been described but this approach left 

an obvious pellet of cellular debris (Brennan et al., 2009). Given that the pellet 

remaining might contain interesting proteins, in this study the pellet was 

further solubilised with 1% (w/v) SDS enhanced with heating and this was 

sufficient to completely solubilise the pellet. Figure 3.4 shows a schematic for 

how the three-step cellular fractionation was carried out. 

 

 To evaluate the importance of the SDS fraction in terms of 

protein content, the bicinchoninic acid protein BCA assay was performed to 

determine the amount of protein in the three fractions: NP40, high salt buffer 

(HSB) and SDS. The average content of protein from 1x107 CLL cells in the 

three fractions was NP40: 250 ± 27 μg (65%); HSB: 21 ± 5 μg (5%); SDS: 115 

± 37 μg (30%) (mean ± SD for six individual samples; Figures 3.5).  



Incubation of 107
 CLL cells with 0.5 ml 0.1% NP40 buffer in ice for 15 min!

Spin          supernatant is NP40 fraction !

Wash twice with hypotonic buffer followed by centrifugation!

Pellet is resuspended with 0.2 ml 420 mM High Salt Buffer for 30 min in ice!

Pellet is resuspended in 0.2 ml 1% SDS, heated for 30 min and sonicated          SDS fraction!

Wash twice with hypotonic buffer followed by centrifugation!

Spin          supernatant is HSB fraction !

Figure 3.4: Schematic workflow of the three-step cellular fractionation.!
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Figure 3.5: Protein yield in the three fractions (NP40, HSB and SDS). 

Three fractions were generated from primary CLL cells (NP40, HSB and 
SDS). Protein concentration in each fraction was determined using BCA 

assay (A and B). !
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Interestingly, this analysis demonstrated that the SDS fractionation contained 

almost a third of the total cellular protein. 

 

3.2.2.2 Quality of the three-step cellular fractionation method 

 The rationale behind developing this cellular fractionation 

method was to extract relatively different proteins in each fraction, in order to 

reduce the complexity of the proteome in each fraction and hopefully identify 

more proteins in the subsequent proteomics analyses. To evaluate the quality 

of the cellular fractionation method, an equivalent amount of proteins from 

each of the three fractions was resolved by SDS-PAGE followed by colloidal 

Coomassie Blue staining (Figure 3.6). This analysis showed that all three 

fractions contained proteins across the full range of molecular weights. 

Focussing on the lower molecular weights, the pattern of the three fractions 

was relatively different suggesting different proteins were extracted in each 

fraction.  

 

3.2.2.3 Reproducibility of three-steps cellular fractionation method 

 To investigate the variation from cell extraction to cell extraction, 

three groups of protein bands were selected to perform densitometric 

analyses of four different CLL samples. This was performed using ImageJ 

software version 1.44o. The three groups of bands included bands present in 

all of the three fractions, bands found only in two fractions and bands that 

were predominantly present in only one fraction (Figure 3.7A I, II, III). The 
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small error bars indicate that the banding pattern was consistent suggesting 

good reproducibility of the cellular fractionation (Figure 3.7B I, II, III). 



Figure 3.6: Visualisation of the proteins in the three fractions (NP40, HSB 

and SDS). 1.5 µg protein from the NP40 fraction, HSB fraction and SDS fraction 
were respectively loaded onto a 4-12% gradient polyacrylamide gel. The gel 

was then stained with colloidal Coomassie blue. The pattern of the three 
fractions was relatively different. This suggested that different proteins were 

extracted in each fraction.!
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Figure 3.7: Reproducibility of the three-step cellular fractionation 

method. Three groups of protein bands were chosen for densitometric 
analysis. These bands include bands present in all three fractions (A-I), bands 

appeared only in two fractions (A-II) bands found predominantly in only one 
fraction (A-III). These analyses were performed on four different CLL samples 

(B-I, II, III). The similar intensity of the measured bands in four different CLL 

samples (as indicated by the small error bars) suggested that this method was 
reproducible.!
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 The BCA assay and the analysis by SDS-PAGE followed by 

colloidal Coomassie staining demonstrated that the SDS fraction is worthy of 

including for proteomics analysis. In this regard, the SDS fraction contained 

30% of the total protein recovered. Furthermore, the SDS fraction contained 

proteins with low molecular sizes (approximately 10-16 kDa) that were not 

extracted in the NP40 fraction or in the HSB fraction.    

 

3.2.2.4 Purity of the three fractions 

 To check the purity of the fractions, equivalent amounts of 

protein from each fraction were used to carry out SDS-PAGE followed by 

western blotting and antibody detection. Specific protein detection was carried 

out for poly(ADP-ribose) polymerase (PARP), as a nuclear protein marker, 

and tubulin, as a cytosolic protein marker (Brennan et al., 2009). Figure 3.8 

showed that PARP was not found in the NP40 fraction suggesting that the 

NP40 fraction was not contaminated by the HSB fraction or the SDS fraction. 

Likewise, tubulin was not present in the HSB or the SDS fractions, which 

indicates that they were not contaminated by the NP40 fraction. However, 

PARP was found in the HSB and SDS fractions suggesting an overlap 

between HSB and SDS fractions.   

 

3.2.2.5 Development of two-step cellular fractionation method 

 Following the analysis described in 3.2.2.4, it was decided not to 

continue with the HSB step but rather to combine the HSB and SDS fractions 

to give a two-step cellular fractionation method for two reasons. The first was  



Figure 3.8: Analysis of PARP and tubulin in NP40 fraction, HSB fraction 

and SDS fraction. 2μg of protein from each fraction were separated by SDS-
PAGE followed by western blotting and antibody detection using specific 

antibody to poly (ADP-ribose) polymerase (PARP), a nuclear protein, and an 
antibody to tubulin, a cytosolic protein. The analysis suggested that there was 

no cross contamination between NP40 fraction and other two fractions. 

However, HSB and SDS fractions found to have different amount of PARP. 
This analysis shows the result driven from three different CLL samples."

  Patient # 1             Patient # 2             Patient # 3 "
  NP40  HSB  SDS  NP40  HSB  SDS  NP40  HSB  SDS"

PARP      "

Tubulin"
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that the HSB fraction contained only 5% of the total protein. Secondly, there 

was an obvious overlap between the HSB fraction and the SDS fraction as 

represented by the presence of PARP in both fractions. Figure 3.9 illustrates 

how this method was performed to generate two different fractions, an NP40 

fraction and an SDS fraction. 

 

 The protein yield in the NP40 fraction and the SDS fraction that 

were generated using the two-step cellular fractionation method was 

determined using the BCA assay. The average content of protein from 1x107 

CLL cells in the two fractions was: NP40: 250 ± 44 μg (65%) and SDS: 131 ± 

19 μg (35%) (data represent the mean ± SD for 20 samples; Figure 3.10). 

 

3.2.2.6 Quality of two-step cellular fractionation method 

 To evaluate the quality of the two-step cellular fractionation 

method, equal amounts of protein from the NP40 and SDS fractions were 

separated by SDS-PAGE followed by colloidal Coomassie Blue staining. This 

analysis demonstrated that the pattern of the two fractions was relatively 

different suggesting different proteins were extracted in each fraction. Figure 

3.11 shows analysis by SDS-PAGE/ colloidal Coomassie Blue staining of the 

NP40 fraction and SDS fraction of three different CLL samples.  



Incubation of 107
 CLL cells with 0.5 ml 0.1% NP40 buffer in ice for 15 min!

Spin          supernatant is NP40 fraction !

Wash twice with hypotonic buffer followed by centrifugation!

Pellet is resuspended in 0.2 ml of 1% SDS, heated for 30 min and sonicated           SDS fraction!

Figure 3.9: Schematic workflow of the two step cellular fractionation method.!
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Figure 3.10: Protein yield from the two fractions (NP40 and SDS). Two 

fractions were generated from primary CLL cells (NP40 and SDS). Protein 
amount in each fraction was determined using BCA assay (A and B).  !
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Figure 3.11: Visualisation of the proteins from the NP40 fraction and the 

SDS fraction. 5 µg protein of NP40 and SDS fractions were respectively 
loaded onto a 4-12% gradient polyacrylamide gel. The gel was then stained 

with Coomassie!blue. The pattern of the two fractions was relatively different. 
This figure shows visualized proteins present in the NP40 fraction and SDS 

fraction from three different CLL samples.!
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3.2.2.7 Reproducibility of two-step cellular fractionation method 

 To investigate the variation from extraction to extraction, three 

groups of protein bands were selected to perform densitometric analyses for 

them in four different CLL samples. This was performed using ImageJ 

software version 1.44o. The three groups of bands included bands present in 

all of the two fractions and bands that were predominantly present in only one 

fraction (Figure 3.12A I, II, III). The small error bars indicate that the banding 

pattern was consistent suggesting good reproducibility of the cellular 

fractionation (Figure 3.12B I, II, III) 

 

3.2.2.8 Purity of the two fractions 

 To check the purity of the fractions, equivalent amounts of 

protein from each fraction was used to carry out SDS-PAGE followed by 

western blotting and antibody detection using an anti-poly(ADP-ribose) 

polymerase (PARP) antibody, which was used as a nuclear protein marker, 

and an anti-tubulin antibody, which was used as a cytosolic protein marker. 

PARP was not found in the NP40 fraction suggesting that the NP40 fraction 

was not contaminated by the SDS fraction. Likewise, tubulin was not present 

in the SDS fractions, which probably indicates that it was not contaminated by 

the NP40 fraction (Figure 3.13). All samples used for proteomics analyses 

showed similar results. 
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Figure 3.12: Reproducibility of the two-step cellular fractionation method. 

Three groups of protein bands were chosen for densitometric analysis. These 
bands include bands present in the two fractions (A-I) and bands that appeared 

only in only one fraction (A-II and III). This analysis was performed on six different 
CLL samples (B-I, II, III). The similar intensity of the measured bands in six 

different CLL samples (as indicated by the small error bars) suggested that this 

method was reproducible.!

n= 6!
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Figure 3.13: Analysis of PARP and tubulin in the NP40 fraction and 

SDS fraction. 5 μg protein from the NP40 fraction and SDS fraction were 
resolved by SDS-PAGE followed by western blotting and antibody 

detection using specific antibodies to poly (ADP-ribose) polymerase 
(PARP), as a nuclear protein marker, and to tubulin, as a cytosolic protein 

marker. The analysis suggested that there was no cross contamination 

between the two fractions. This figure shows results from three different 
CLL samples."
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3.3  Discussion 

 In order to perform good quality CLL proteomics analysis, 

considerable effort was made to ensure the quality of the CLL samples utilized. 

In this regard, all CLL samples were separated from peripheral blood samples 

derived from CLL patients within 4 hours of collection. This was very important 

to avoid ex vivo manipulation of CLL cells that might result in pathologically 

irrelevant changes in the two forms of CLL in terms of protein expression. 

 

 The purity of CLL cells was taken into consideration; only CLL 

samples with ≥95% CD19 positivity were used. This was not the case with 

some other CLL proteomics studies where the purification step of CLL cells 

was not included in their sample preparation workflow (Voss et al., 2001, 

Cochran et al., 2003). Restricting the selection of CLL samples to those with 

CD19+ ≥95% is an essential quality control step in order to avoid including the 

proteome of other mononuclear cells such as monocytes or T-lymphocytes in 

the analysis of the CLL proteome. This quality control step becomes even 

more critical when using CLL samples derived from treated patients as 

treatment kills CLL cells, which in turn makes their percentage lower among 

other isolated blood mononuclear cells. 

 

 CD19 is not a specific marker for CLL cells as it is expressed on 

both normal and malignant B cells (Nadler et al., 1983). The reason why 

CD19 was used to determine the purity of the CLL cells is that all of the CLL 

samples were separated from whole peripheral blood obtained from patients 
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who had already been diagnosed with CLL. Given the lymphocytosis exhibited 

by these patients, the majority of B-cells in the peripheral blood samples of 

CLL patients were CLL cells.  

 

 The second criterion applied on selection of CLL samples was 

viability of CLL cells. This was necessary because some of the CLL samples 

were obtained from patients who had previously received treatment and from 

patients with different clinical courses. This, combined with the known 

propensity of some CLL cells to apoptosis ex vivo made it important to isolate 

only the viable CLL cells (Collins et al., 1989). All of the seven published CLL 

proteomics studies (discussed in section: 1.3) used CLL samples regardless 

of their viability (Voss et al., 2001, Cochran et al., 2003, Boyd et al., 2003, 

Barnidge et al., 2005a, Barnidge et al., 2005b, Miguet et al., 2009, Perrot et al., 

2011). The risk of using CLL samples with low viability is that it may contribute 

to changes in protein expression that are irrelevant to the pathology of the 

disease. As a result, this study limited the use of CLL samples to those with 

high viability.  

 

 Although mutational status of IGHV is regarded as the most 

accurate and widely applicable prognostic marker in CLL (Damle et al., 1999, 

Hamblin et al, 1999), CD38 has been used as a prognostic marker to 

discriminate between CLL patients with bad or good prognosis (Durig et al., 

2002, Pepper et al., 2012). This decision was made because the majority 

(3/4) of the published CLL proteomics studies that explored the protein 
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expression of the two forms of CLL ware based on the mutational status of 

IGHV genes (Cochran et al., 2003, Barnidge et al., 2005a, Perrot et al., 2011). 

In fact, only one CLL proteomics study was partially conducted to compare the 

proteome of CD38+ CLL to that of CD38– CLL and showed no significant 

changes (Cochran et al, 2003). Furthermore, transcriptomic studies that 

compared CD38+ CLL to CD38– CLL showed a number of significantly altered 

mRNA between the two sets of samples (Pepper et al, 2007, Huttmann et al, 

2006). In addition, CD38 expression is relatively easy to determine by flow 

cytometry following staining with anti-CD19 antibody and an anti-CD38 

antibody when CLL samples were received. 

 

 Several studies have demonstrated different cut-offs for CD38 

expression that discriminate poor prognosis from good prognosis CLL. These 

cut-offs include 30% (Damle et al., 1999), 20% (Durig et al, 2002, Pepper et 

al., 2012), and 7% (Krober et al., 2002). Different studies that focused on the 

impact of CD38 expression on CLL pathology and prognosis used 20% as a 

cut-off to differentiate between CD38+ CLL and CD38– CLL (Deaglio et al., 

2007, Vaisitti et al., 2010, Huttmann et al., 2006). In this study, CLL samples 

that were collected had CD38 expression of 40% or more representing the 

bad prognosis of CLL and 5% or less representing the good prognosis of CLL. 

Such a distinct percentage of CD38 expression was used in the hope that 

differences between these groups of CLL samples would be highly 

pronounced at the protein expression level. 
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 As mentioned earlier, one of the keys to a successful proteomics 

study is the quality of the protein extract to be analysed (Dreger, 2003, Yates 

et al., 2005, Ahmed, 2009, Brewis and Brennan, 2010). Of the published CLL 

proteomics studies, 3/7 used whole cell lysate (Voss et al., 2001, Cochran et 

al., 2003, Perrot et al., 2011). While this had the potential to subject all cellular 

proteins to analysis, it did not reduce sampleʼs complexity, which in turn 

limited the potential to identify a large number of proteins. In addition, these 

approaches did not provide information regarding protein localization (Brewis 

and Brennan, 2010).  

 

 Other published CLL proteomics studies (3/7) specifically 

focused on one fraction namely membrane proteins (Boyd et al., 2003, 

Barnidge et al., 2005b, Miguet et al., 2009). The advantage of using one 

protein extract is that sample complexity can be reduced and information 

about protein localization can be obtained. However, it leaves other protein 

fractions, such as the nuclear fraction and cytosolic fraction, unanalyzed.  

 

 Only one published CLL proteomics study analysed cellular 

proteins in both cytosolic and membrane fractions (Barnidge et al., 2005a). In 

the current project, a fractionation method that was previously described by 

Brennan et al. (2009) was developed to fractionate cellular proteins into two 

different fractions termed the NP40 fraction and the SDS fraction. The cellular 

fractionation methods shown by Barnidge et al. (2005a) and those described 

in this study had the potential to subject more cellular proteins to analysis, 
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whilst at the same time reducing the sample complexity. This should facilitate 

the identification of many proteins by proteomics and provide information 

about protein localization. Nevertheless, the feature of the method 

demonstrated in this project is that it is less time consuming compared to the 

method described by Barnidge et al., (2005a) which involves two long 

centrifugation steps of 45 min each. 

 

 Using 1DE followed by silver staining Barnidge et al., (2005a) 

showed that the cytosolic fraction and the membrane fraction contained 

relatively different proteins. Similarly, the analysis of the NP40 fraction and the 

SDS fraction by 1DE, followed by colloidal Coomassie Blue staining, has also 

demonstrated that relatively different proteins were extracted in the two 

fractions. In fact, four intense bands with low molecular weight (<39 kDa) were 

only present in the SDS fraction. This reflects the quality of the fractionation 

method that was developed in this project. 

 

 While cellular fractionation methods can be used for enrichment 

of particular proteins, such as cytosolic proteins, it is very difficult to generate 

a completely pure protein fraction (Huber et al., 2003). However, relative 

purity of a protein extract can be monitored using protein markers (Brennan et 

al., 2009). In the two-step cellular fractionation method developed in this 

chapter, tubulin, a cytosolic protein marker, was detected only in the NP40 

fraction, whereas PARP, a nuclear protein marker, was detected only in the 

SDS fraction. In contrast, in the fractionation method demonstrated by 
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Barnidge et al. (2005a), tubulin was detected in the cytosolic fraction as well 

as the membrane fraction suggesting that the latter was contaminated by the 

former. This may indicate that the two-step cellular fractionation method 

described in this chapter generates relatively more pure fractions compared 

with the fractionation method demonstrated by Barnidge et al. (2005a). 

 

 In this chapter, good quality NP40 fractions and SDS fractions 

were generated from poor prognosis and good prognosis CLL samples. The 

next step was to be subject these protein extracts to different proteomics 

approaches in an attempt to identify proteins with potential involvement in CLL. 
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4.1 Introduction 

 Different proteomics approaches have been used to study the 

proteome of CLL (discussed in section 1.3). Three studies used 2DE as a tool 

for protein separation (Voss et al., 2001, Cochran et al., 2003, Perrot et al., 

2011). While Cochran et al., (2003) and Perrot et al., (2011) detected a large 

number of proteins (spots) by 2DE (800 spots and 1873 spots respectively), 

they identified a small number proteins (≤ 60 proteins) by mass spectrometry 

(MS). Other CLL proteomics studies used LC either alone or in combination 

with 1DE for sample separation prior to mass spectrometry analysis (Boyd et 

al., 2003, Barnidge et al., 2005a, Barndige et al., 2005b, Miguet et al., 2009). 

These studies identified relatively large numbers of proteins (≥ 371 proteins). 

 

 This chapter aimed to identify many proteins in the NP40 

fractions and the SDS fractions that were generated from CLL samples. This 

was achieved by subjecting CLL protein extracts to a qualitative proteomics 

workflow.  

 

 In the previous chapter the processes of isolating good quality 

CLL samples and developing a good quality cellular fractionation method were 

explained in detail. This chapter explains the qualitative proteomics workflow. 

Briefly, the protein content of the NP40 fraction or SDS fraction was 

precipitated and digested by trypsin. The resulting peptide ʻsoupʼ was then 

subjected to separation by 2D nano-LC; separated peptides were subjected to 

MALDI TOF-TOF mass spectrometry for MS and MS/MS analysis.  Resulting 
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MS/MS spectra were searched against the Swiss-Prot database using 

GPS/MASCOT for peptide sequencing and protein identification (Figure 4.1). 

 

4.2 Results 

4.2.1 Protein precipitation and digestion   

 In addition to proteins, the NP40 fractions and SDS fractions 

also contained other molecules such nucleic acids, lipids and detergents. For 

a good quality mass spectrometry experiment molecules other than proteins 

should be removed from the samples (Ahmed, 2009). To do that, protein 

precipitation was carried out using the 2D clean Up kit reagent and method. 

 

 The strategy that was used for protein identification was a 

bottom up approach (shotgun proteomics), where sequencing data of some 

peptides are used to identify their ʻparentʼ proteins (Yates et al., 2009). 

Consequently, protein digestion was essential to produce peptides that would 

be interrogated by MALDI mass spectrometry. Therefore, following protein 

precipitation, proteins were incubated overnight with 2µg of trypsin at 37°C for 

protein digestion. Trypsin cleaves the C-terminal of lysine (K) and arginine (R) 

amino acid residues (Westermeier et al., 2008). 



Protein precipitation !

Protein digestion !

MALDI TOF-TOF mass spectrometry!

Bioinformatics and data analysis!

2D nano-LC!

Figure 4.1: Workflow of the qualitative proteomics analysis. Proteins 
from the NP40 fraction and SDS fraction were separately subjected to 
protein precipitation using the 2D clean up kit followed by trypsin digestion. 
Resulting peptides were separated by 2D nano-LC on an SCX column 
using stepwise elution with increasing concentrations of NaCl 
(breakthrough, 100mM, 200mM, 400mM, 800mM, and 1M). Each salt 
fraction was subsequently further separated on an RP column. Separated 
peptides were then spotted out on a MALDI plate for analysis by MALDI 
TOF-TOF mass spectrometry. Generated MS/MS spectra were searched 
against the Swiss-Prot database by using GPS explorer software/MASCOT.!
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4.2.2  Two-dimensional nano liquid chromatography (2D nano-LC) 

4.2.2.1 Quality control of 2D nano-LC 

 Although the sample complexity was partially reduced by 

performing the two-step cellular fractionation method (described in the 

previous chapter), separation by 2D nano-LC of the protein digests would 

facilitate identification of many proteins by MALDI mass spectrometry. In the 

course of optimising the qualitative proteomics workflow, in particular 

separation by 2D nano-LC, quality control runs were employed to avoid using 

the 2D nano-LC with poorly functioning properties to separate CLL peptides 

extracts. Examples of poorly separated CLL protein extracts on the 2D nano-

LC before introducing the use of quality control checks to the 2D nano-LC are 

shown in Appendix 1. 

 

  The quality control checks included examining the SCX column 

using a protein mixture digest (P/N 161088; Dionex) and the RP column using 

Cytochrome digest (P/N 161088; Dionex). Figure 4.2A shows an example of a 

quality control run for SCX column using protein mixture digest, where many 

peaks, which probably represent peptides, were recorded at different times 

with various intensities in every salt fraction (breakthrough, 100mM, 200mM, 

400mM, 800mM, and 1M). This indicated that the SCX column was 

performing well. In addition, the chromatogram of cytochrome digest on an RP 

column shows different peaks, which probably represent Cytrochrome 

peptides. These were eluted at different times with different intensities (Figure 

4.2B). This indicated that the RP column was also performing well.  



(A)!

(B)!

Figure 4.2: Monitoring the performance of the 2D nano-LC. A 

commercially available protein mixture digest was used to examine the quality 
of the SCX column (A). Likewise, a commercially available cytochrome digest 

was used to check the quality of the RP column (B). This step was done every 
time when biological samples were to be separated on the 2D nano-LC. This 

analysis suggested that both columns were performing well and were ready to 

be used for separating the biological samples.!
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 4.2.2.2 Separation of CLL protein digest by 2D nano-LC 

 After being satisfied with the performance of the nano-LC, 

peptides from either the NP40 fraction or SDS fraction were subjected to 

separation by 2D nano-LC. First, the peptides were separated on an SCX 

column in stepwise elution using increasing concentrations of NaCl 

(breakthrough, 100mM, 200mM, 400mM, 800mM, and 1M). Each salt fraction 

was then desalted on an RP desalting column and subsequently further 

separated on an RP column. Figure 4.3 shows examples of a UV trace record 

of peptides separated by 2D nano LC. Separated peptides were mixed with a 

peptide Glu-Fib and CHCA and then spotted out onto a MALDI plate (one 

spot/8 sec). The peptide Glu-Fib will be used as quality control for MALDI 

mass spectrometry performance and for internal calibration, while CHCA was 

used for peptide soft ionisation in the MALDI mass spectrometry.  

 

4.2.3 MALDI TOF-TOF mass spectrometry  

 Separated peptides were subjected to analysis by MALDI TOF-

TOF mass spectrometry to generate MS and MS/MS spectra. First, the 

intensity and mass of peptides in the 1530 eluted spots across the MALDI 

plate were measured (MS mode). Then the MS/MS mode started where the 

most abundant six peptides in each eluted spot were selected for precursor 

fragmentation in the CID chamber to generate MS/MS spectra, which would 

be used later for peptide sequencing and protein identification. 



Figure 4.3: Chromatogram of peptides separated by 2D nano-LC. Protein 

digest (13.3 μg) from the NP40 fraction (A) and from the SDS fraction (B) were 
separated by 2D nano-LC. Firstly, peptides were separated on the SCX column 

using six salt fractions with an increasing concentration. Each fraction was then 
further separated on an RP column using a three-step gradient. The first step 

was from 5 to 20% solvent B for the first 34 mins, the second step was from 

20% to 50% solvent B for 21 mins and the third step was from 50% to 90% 
solvent B for 4 mins. Peptides were collected from the 25th-59th mins for each 

salt fraction. A total of 1530 spots were eluted onto the MALDI target plate."

(A)!

(B)!
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4.2.3.1 Monitoring the quality of the MALDI mass spectrometry  

analysis 

 The quality of the MALDI mass spectrometry runs were 

monitored by performing extracted ion chromatography (XIC) analysis, which 

can be used to check whether a particular precursor (peptide) is detected by 

MALDI mass spectrometry in MS mode. XIC analysis was performed for the 

Glu-Fib peptide (1570.677 Da), which was spiked into each eluted spot (1530) 

across the MALDI plate. This peptide should be detected in each of these 

spots. Figure 4.4A shows an example of an XIC analysis for the Glu-Fib 

peptide on a MALDI mass spectrometry run, which demonstrates that the Glu-

Fib peptide was detected in all of the eluted spots. As elucidated in the 

materials and methods (section: 2.6.4), there were gaps between the eluted 

spots of different salt fractions. For example, there were 109 empty spots 

between the eluted spots from the breakthrough fraction and the eluted spots 

from the 100mM salt fraction. In addition, there were 5 empty spots in the 

remaining salt fractions. In these gaps Glu-Fib peptides was not detected. 

Figure 4.4B and 4.4C show examples of Glu-Fib precursor (1570.68 Da) in 

two different spots. 

  

 The quality of the MALDI mass spectrometry runs was also 

estimated by carrying out a Base Peak Chromatogram (BPC) analysis, which 

shows the summed intensity of peptides that were detected in every eluted 

spot (1530) across the MALDI plate. Figure 4.5 demonstrates that peptides 

with different intensities were detected in each eluted spot on the MALDI plate.  



(A)                             Extracted Ion Chromatography (XIC) analysis !

(B)                     Precursors identified in spot 201 (breakthrough fraction)!

(C)                             Precursors identified in spot 1444 (1M salt fraction)!

Figure 4.4: Glu-Fib detection by MALDI mass spectrometry. XIC can be used 

to check whether a particular precursor (peptide) was detected by MALDI mass 
spectrometry in MS mode. The molecular weight of Glu-Fib peptide is 1570.677 

Da. Therefore, the  XIC search was done with a mass of 1570.677± 0.2. The 
analysis  showed that a peptide (1570.677± 0.2 Da), which was probably Glu-Fib, 

was present in all the eluted spots (1530) on the MALDI plate (A). An example of 

detected Glu-Fib precursor (1570.68 Da) is shown in two different spots; 201 (B) 
and 1444 (C). !
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Figure 4.5: Base Peak Chromatography (BPC) analysis of an MS 

analysisby MALDI mass spectrometry. BPC measures the summed 
identified precursors (peptides) in each eluted spot and plots them against 

their retention time across the MALDI plate. Therefore, it can give an 
indication of the quality of the MS run by MALDI mass spectrometry. This 

figure shows an example of MS scan of peptides spotted on a MALDI plate, 

where in almost all eluted spots (1530) there were detected peptides. In 
addition it reflected the quality of the peptides separation by 2D nano-LC, 

where in each salt fraction (6x) there were detected peptides. This BPC 
analysis was for peptides separated on the 2D nano-LC shown previously 

in Figure 4.3A.  !
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4.2.3.2 Data analysis 

 Generated MS/MS spectra were searched against the Swiss-

Prot database using the MASCOT Database search engine v2.1 (Matrix 

Science) embedded into GPS Explorer software v3.6 (Applied Biosystems).  

The search was performed specifically using human taxonomy with trypsin 

digestion (only one missed cleavage was allowed); tolerance of MS/MS 

spectra was 0.3Da. Cysteine modification by methyl methanethiosulfonate 

(MMTS) was employed as a fixed modification. Variable modifications were 

oxidation (M), pyro-glu (N-term E) and pyro-glu (N-term Q). For a protein to be 

reported as a detected protein in the sample it must be identified with at least 

one peptide (ion score ≥95% confidence interval C.I.).  

 

4.2.4   Characterisation of the qualitative proteome of primary 

human CLL cells 

 In total 27 LC-MALDI mass spectrometry runs were performed 

on 12 different CLL samples. Nine LC-MALDI mass spectrometry runs were 

performed using the NP40 fractions. Of these nine, two were performed on a 

single sample (one patient), two runs were done on two compined samples 

(four patients) and five runs were performed on four pooled samples (12 

patients). In addition, ten LC-MALDI mass spectrometry runs were performed 

using the SDS fractions. Of these ten runs, two were done on a single sample 

(one patient), two runs were performed on two combined samples (four 

patients) and six runs were done on four pooled samples (12 patients). The 

other eight LC-MALDI mass spectrometry runs were performed on a mixture 
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of the cellular fractions (NP40 and SDS fractions). These eight runs consist of 

five runs done on single samples (two patients) and three runs performed on 

two pooled samples (four patients). 

  

 In total, 900 proteins were identified (Appendix 2). Of these 

proteins, 625 (69%) were identified with 2 or more peptides (Ion Score !95% 

C.I., False Discovery Rate (FDR) = 0%) and 275 (31%) were identified with 

one peptide (Ion Score >99.9% C.I., FDR = 3.2%). Figure 4.6 shows the 

peptide count of proteins detected with multiple peptides. 

 

 Of the proteins identified with multiple peptides (625), 568 (90%) 

were identified in multiple MALDI mass spectrometry analyses. Table 4.1 

presents 10 examples of the most and least frequently identified proteins 

based on multiple peptides.  Similarly, of the proteins that were detected with 

a single peptide (275), 167 (61%) were found in multiple MALDI mass 

spectrometry analyses. Ten examples of these proteins are shown in Table 

4.2. These data were encouraging to investigate whether there was a relation 

between peptide count or total ion score (TIS: total ion score of peptides either 

distinct or identical that were identified by mass spectrometry) and the chance 

of identifying the same protein by MALDI mass spectrometry in technical or 

biological replicates. Figure 4.7 demonstrates a significant correlation 

between the feasibility of identifying the same protein in multiple MALDI mass 

spectrometry runs and peptide count (A) or TIS (B). This analysis suggested  
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Figure 4.6: Protein identifications based on multiple peptides. Of the 
900 proteins, 625 (69%) were identified with multiple peptides. This figure 
shows the number (A) and percentage (B) of proteins assigned to the 
number of peptides used for identification.!
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Protein Name!
Accession 

Number!
Peptide 
Count! TIS! BIS!

BIS 
C.I. %!

Number of 
MALDI MS 
analyses!

Actin, cytoplasmic 2! ACTG_HUMAN! 17! 1439! 186! 100! 20!
Heterogeneous nuclear 

ribonucleoproteins A2/B1! ROA2_HUMAN! 15! 1296! 229! 100! 20!
Histone H4! H4_HUMAN! 10! 1016! 150! 100! 20!

Nucleophosmin! NPM_HUMAN! 7! 377! 72! 100! 20!
Keratin, type II cytoskeletal 

1! K2C1_HUMAN! 32! 2936! 201! 100! 19!
Ubiquitin carboxyl-terminal 

hydrolase 7! UBP7_HUMAN! 2! 76! 40! 99.5! 1!
Lamin-A/C! LMNA_HUMAN! 2! 76! 39! 99.4! 1!

Phenylalanyl-tRNA 
synthetase alpha chain! SYFA_HUMAN! 2! 73! 38! 99.2! 1!
26S protease regulatory 

subunit 6B! PRS6B_HUMAN! 2! 71! 38! 99.1! 1!
Guanine nucleotide-binding 
protein G(k) subunit alpha! GNAI3_HUMAN! 2! 73! 37! 99! 1!

Table 4.1: Examples of the most and the least frequently identified proteins 

based on multiple peptides in MALDI mass spectrometry analyses!

Protein extracts from CLL cells (the NP40 fractions and the SDS fractions) were 
digested, separated by 2D nano-LC and analysed by MALDI mass spectrometry. 
These 10 proteins were chosen after the list of proteins detected with multiple 
peptides was sorted according to the number of MALDI mass spectrometry 
analyses through which proteins were detected, peptide count and BIS C.I%. 
TIS: total ion score, BIS: best ion score, BIS C.I.%: best ion score confidence 
interval percentage.!
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Protein Name!
Accession 

Number!
Peptide 
Count! TIS! BIS!

BIS 
C.I. %!

Number of 
MALDI MS 
analyses!

Small nuclear ribonucleoprotein Sm 
D3! SMD3_HUMAN! 1! 83! 83! 100! 13!

Cytochrome c oxidase subunit 2! COX2_HUMAN! 1! 66! 66! 100! 10!
Histone H4-like protein type G! H4G_HUMAN! 1! 89! 89! 100! 9!

Small ubiquitin-related modifier 3! SUMO3_HUMAN! 1! 85! 85! 100! 9!
Splicing factor, arginine/serine-rich 

7! SFRS7_HUMAN! 1! 62! 62! 99.98! 9!
Kinectin! KTN1_HUMAN! 1! 48! 48! 99.92! 1!

Putative double homeobox protein 
3 ! DUX3_HUMAN! 1! 51! 52! 99.92! 1!

Microsomal glutathione S-
transferase 3! MGST3_HUMAN! 1! 48! 48! 99.92! 1!

NADH dehydrogenase [ubiquinone] 
1 alpha subcomplex subunit 6! NDUA6_HUMAN! 1! 48! 48! 99.91! 1!

RNA-binding protein 4! RBM4_HUMAN! 1! 47! 47! 99.91! 1!

Table 4.2: Examples of the most and the least frequently identified proteins 

based on a single peptide in MALDI mass spectrometry analyses!

Protein extracts from CLL cells (The NP40 fractions and the SDS fractions) were 
digested, separated by 2D nano-LC and analysed by MALDI mass spectrometry. 
These 10 proteins were selected after the list of proteins detected with a single 
peptide was sorted according to the number of MALDI mass spectrometry 
analyses through which proteins were detected, peptide count and BIS C.I%. 
TIS: total ion score, BIS: best ion score, BIS C.I.%: best ion score confidence 
interval percentage.!
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Figure 4.7: Relationship between detecting the same proteins in 

multiple MALDI mass spectrometry analyses and peptide count or 
TIS. This analysis showed a significant correlation between the 

possibility of identifying a protein frequently in MALDI mass spectrometry 
analyses and its peptide count (A) or TIS (B). !
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that the larger the peptide count or TIS of a protein, the higher the chance to 

identify this protein in technical or biological replicates.   

 

 Of the 900 proteins, 729 proteins were identified in the NP40 

fraction, while 326 were identified in the SDS fraction; 188 proteins were 

common to both fractions (Figure 4.8). An example of a protein that was 

identified in the NP40 fractions was tubulin beta chain, which was detected 

with 13 peptides (Table 4.3) covering 37% of the sequence (Figure 4.9). An 

example of MS and MS/MS spectra of one of these peptides are shown in 

Figure 4.10. In addition, one protein that was identified in the SDS fractions 

was PARP, which was detected with 12 peptides (Table 4.4) covering 16% of 

the protein sequence (Figure 4.11). An example of MS and MS/MS spectra of 

one of these peptides is shown in Figure 4.12. Proteins from the NP40 

fractions and/or the SDS fractions that were identified with the highest peptide 

count (in all experiments) are listed in Table 4.5. 

 

4.2.5 Transcriptomic data support single peptide-based protein 

identification  

 Of the identified 900 proteins, 108 proteins (12%) were identified 

in a single mass spectrometry analysis with a single peptide ID (Ion Score 

>99.9% C.I.). To add more confidence to this type of identification, 

independent published transcriptomic data derived from six CLL samples 

(Huttmann et al., 2006) were used to check whether CLL samples expressed 

the cognate transcript encoding the 108 proteins. Only Affymetrix signals with  



541!
(62%)!

188!
(22%)!

138!
(16%)!

Total = 867!

NP40 fractions!
729!

SDS fractions!
326 !

Figure 4.8: Venn diagram of proteins identified in the NP40 fraction 

and in the SDS fraction. These data represents 9 LC-MALDI runs 
performed on the NP40 fractions and 10 LC-MALDI runs on the SDS 

fractions. !
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Peptide sequence! IS! IS C.I. %!
EIVHIQAGQCGNQIGAK! 131! 100!

ISVYYNEATGGK! 120! 100!
AILVDLEPGTMDSVR! 103! 100!

FPGQLNADLR! 102! 100!
GHYTEGAELVDSVLDVVR! 96! 100!

EVDEQMLNVQNK! 87! 100!
YLTVAAVFR! 82! 100!

IMNTFSVVPSPK! 81! 100!
ISEQFTAMFR! 77! 100!
LAVNMVPFPR! 76! 100!

NSSYFVEWIPNNVK! 72! 100!
ALTVPELTQQVFDAK! 55! 100!

NMMAACDPR! 31! 96!

Table 4.3: Examples of peptides that were identified in the NP40 

fractions and assigned to tubulin  beta chain (TBB5_HUMAN).!

Peptides from the NP40 fractions were separated by 2D nano-LC and 
introduced into the MALDI mass spectrometry for MS and MS/MS analysis. 
This table shows peptide sequences of 13 different peptides with a minimum 
ion score 96% C.I. that were mapped to Tubulin beta chain 
(TBB5_HUMAN). These data were extracted from four MALDI mass 
spectrometry analyses. These peptides were sorted according to their ion 
score (IS). Data were extracted from four MALDI mass spectrometry 
analyses that were performed on the NP40 fractions. !

37 % coverage of the Tubulin  beta chain sequence!

MREIVHIQAGQCGNQIGAKFWEVISDEHGIDPTGTYHGDSDLQLDRISVYYNEATGGKYVPRAILVDLEPGTMDSVRS
GPFGQIFRPDNFVFGQSGAGNNWAKGHYTEGAELVDSVLDVVRKEAESCDCLQGFQLTHSLGGGTGSGMGTLLISKI
REEYPDRIMNTFSVVPSPKVSDTVVEPYNATLSVHQLVENTDETYCIDNEALYDICFRTLKLTTPTYGDLNHLVSATMSG
VTTCLRFPGQLNADLRKLAVNMVPFPRLHFFMPGFAPLTSRGSQQYRALTVPELTQQVFDAKNMMAACDPRHGRYL
TVAAVFRGRMSMKEVDEQMLNVQNKNSSYFVEWIPNNVKTAVCDIPPRGLKMAVTFIGNSTAIQELFKRISEQFTAMFR
RKAFLHWYTGEGMDEMEFTEAESNMNDLVSEYQQYQDATAEEEEDFGEEAEEEA!

Figure 4.9: Sequence coverage of Tubulin  beta chain (TBB5_HUMAN). 

Data generated from four MALDI mass spectrometry analyses that were 
performed on the NP40 fractions were used to investigate the sequence 
coverage of Tubulin  beta chain. Of the full sequence of Tubulin beta chain 
(444 amino acids), 36.7% (136 amino acids) were identified (Red Bold). 
Underlining was used to discriminate between adjacent peptides that were 
identified.!
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 (A)                                         MS: determination of peptides masses  !
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Figure 4.10: Example of MS and MS/MS spectra of Tubulin beta chain 

(TBB5_HUMAN) that was identified in the NP40 fractions. Separated 
peptides were applied to MALDI mass spectrometry to measure their masses 

and to perform peptide fragmentation in order to identify their sequences. A 
peptide with mass of 1302 (A) was subjected to MS/MS analysis to identify its 

sequence (B). The peptide sequence on the MS/MS spectra is read from the C 

terminus (ISVYYNEATGGK) as only y ions were shown in this figure. !
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Peptide sequence! IS! IS C.I. %!
HPDVEVDGFSELR! 140! 100!
TTNFAGILSQGLR! 118! 100!
QQVPSGESAILDR! 103! 100!

GGAAVDPDSGLEHSAHVLEK! 85! 100!
AEPVEVVAPR! 68! 100!

VVSEDFLQDVSASTK! 66! 100!
MAIMVQSPMFDGK! 61! 100!
VVDRDSEEAEIIR! 50! 100!

NREELGFRPEYSASQLK! 47! 100!
KPPLLNNADSVQAK! 37! 99!

TLGDFAAEYAK! 37! 99!
GIYFADMVSK! 32! 97!

Table 4.4: Examples of peptides that were identified in the SDS 

fractions and assigned to Poly [ADP-ribose] polymerase 1 
(PARP1_HUMAN).!

Peptides from the SDS fractions were separated by 2D nano-LC and 
introduced into the MALDI mass spectrometry for MS and MS/MS analysis. 
This table shows the peptide sequence of 12 different peptides with a 
minimum ion score 97% C.I. that were mapped to PARP. These data were 
extracted from four MALDI mass spectrometry analyses. These peptides 
were sorted according to their ion score (IS). Data were extracted from four 
MALDI mass spectrometry analyses that were performed on the SDS 
fractions.  !

MAESSDKLYRVEYAKSGRASCKKCSESIPKDSLRMAIMVQSPMFDGKVPHWYHFSCFWKVGHSIRHPDVEVDGFS
ELRWDDQQKVKKTAEAGGVTGKGQDGIGSKAEKTLGDFAAEYAKSNRSTCKGCMEKIEKGQVRLSKKMVDPEKP
QLGMIDRWYHPGCFVKNREELGFRPEYSASQLKGFSLLATEDKEALKKQLPGVKSEGKRKGDEVDGVDEVAKKKS
KKEKDKDSKLEKALKAQNDLIWNIKDELKKVCSTNDLKELLIFNKQQVPSGESAILDRVADGMVFGALLPCEECSGQ
LVFKSDAYYCTGDVTAWTKCMVKTQTPNRKEWVTPKEFREISYLKKLKVKKQDRIFPPETSASVAATPPPSTASAPA
AVNSSASADKPLSNMKILTLGKLSRNKDEVKAMIEKLGGKLTGTANKASLCISTKKEVEKMNKKMEEVKEANIRVVSE
DFLQDVSASTKSLQELFLAHILSPWGAEVKAEPVEVVAPRGKSGAALSKKSKGQVKEEGINKSEKRMKLTLKGGAA
VDPDSGLEHSAHVLEKGGKVFSATLGLVDIVKGTNSYYKLQLLEDDKENRYWIFRSWGRVGTVIGSNKLEQMPSKE
DAIEHFMKLYEEKTGNAWHSKNFTKYPKKFYPLEIDYGQDEEAVKKLTVNPGTKSKLPKPVQDLIKMIFDVESMKKA
MVEYEIDLQKMPLGKLSKRQIQAAYSILSEVQQAVSQGSSDSQILDLSNRFYTLIPHDFGMKKPPLLNNADSVQAKV
EMLDNLLDIEVAYSLLRGGSDDSSKDPIDVNYEKLKTDIKVVDRDSEEAEIIRKYVKNTHATTHNAYDLEVIDIFKIERE
GECQRYKPFKQLHNRRLLWHGSRTTNFAGILSQGLRIAPPEAPVTGYMFGKGIYFADMVSKSANYCHTSQGDPIGL
ILLGEVALGNMYELKHASHISKLPKGKHSVKGLGKTTPDPSANISLDGVDVPLGTGISSGVNDTSLLYNEYIVYDIAQV
NLKYLLKLKFNFKTSLW!

16% coverage of Poly [ADP-ribose] polymerase 1 sequence !

Figure 4.11: Sequence coverage of Poly [ADP-ribose] polymerase 1 

(PARP1_HUMAN). Data generated from four MALDI mass spectrometry 
analyses that were performed on the SDS fractions were used to investigate 
the sequence coverage of PARP. Of the full sequence of PARP (1014 amino 
acids), 16% (162 amino acids) were identified (Red Bold). !

126 



y1!
175!

y2!
288!

y3!
417!

y4!
504!

y5!
651!

y6!
708!

y7!
823!

y8!
922!

y9!
1051!

y10!
1151!

y11!
1266!

y12!
1363!

Precursor!
1500!

 R             L           E          S          F         G        D        V           E           V         D         P          H    !

 (A)                                         MS: determination of peptides masses  !

 (B)                MS/MS fragmentation of a selected peptide: Precursor mass:1500!

Mass (m/z)!

Mass (m/z)!

In
te

ns
ity
!

In
te

ns
ity
!

708!

Figure 4.12: Example of MS and MS/MS spectra of Poly [ADP-ribose] 

polymerase 1 (PARP1_HUMAN) that was identified in the SDS fractions. 
Separated peptides were applied to MALDI mass spectrometry to measure their 

masses and to perform peptide fragmentation in order to identify their 
sequences. A peptide with mass of 1500 (A) was subjected to MS/MS analysis 

to identify its sequence (B). The peptide sequence based on the MS/MS spectra 

is read from the C terminus (HPDVEVDGFSELR) as only y ions were shown in 
this figure. !
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Proteins identified in the NP40 fraction!

Protein name! Accession Number! Peptide Count! TIS! BIS!
BIS C.I. 

%!
Moesin! MOES_HUMAN! 21! 1346! 101! 100!

Annexin A6! ANXA6_HUMAN! 21! 1286! 97! 100!
Plastin-2! PLSL_HUMAN! 20! 1507! 167! 100!
Vimentin! VIME_HUMAN! 18! 1559! 192! 100!
Filamin-A! FLNA_HUMAN! 17! 1145! 127! 100!

Actin, cytoplasmic 2! ACTG_HUMAN! 17! 1439! 186! 100!
Myosin-9! MYH9_HUMAN! 16! 994! 122! 100!

Ezrin! EZRI_HUMAN! 16! 964! 88! 100!
Talin-1! TLN1_HUMAN! 15! 865! 110! 100!

Heat shock cognate 71 kDa 
protein! HSP7C_HUMAN! 15! 945! 109! 100!

Proteins identified in the SDS fraction!
Plectin! PLEC_HUMAN! 35! 2067! 120! 100!

Vimentin! VIME_HUMAN! 25! 1898! 123! 100!
Nuclear mitotic apparatus 

protein 1! NUMA1_HUMAN! 24! 1908! 160! 100!
Lamin-B2! LMNB2_HUMAN! 20! 1359! 124! 100!
Myosin-9! MYH9_HUMAN! 20! 1221! 97! 100!
Lamin-B1! LMNB1_HUMAN! 18! 1573! 160! 100!

Heterogeneous nuclear 
ribonucleoproteins A2/B1! ROA2_HUMAN! 15! 1296! 229! 100!
Heterogeneous nuclear 

ribonucleoprotein M! HNRPM_HUMAN! 14! 1017! 131! 100!
Actin, cytoplasmic 2! ACTG_HUMAN! 13! 1124! 153! 100!
Poly [ADP-ribose] 

polymerase 1! PARP1_HUMAN! 13! 1019! 117! 100!

Table 4.5: A list of the ten proteins with the highest peptide counts that were 

identified in the NP40 fraction and/or in the SDS fraction. !

Protein digest from the NP40 and SDS fractions were separately digested, 
separated on 2D nano-LC and analysed by MALDI mass spectrometry. 
Subsequently, MS/MS queries were searched against the Swiss- Prot database 
using the MASCOT database search engine embedded into GPS Explorer 
software. TIS: total ion score, BIS: best ion score, BIS C.I.%: best ion score 
confidence interval percentage.!
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an absolute call “present” or “marginal” were investigated. Of the 108 proteins, 

93 (86%) had Affymetrix IDs and could be used for the analysis. Of these 

proteins, 92 (99%) had a cognate transcript expression in the CLL samples 

(range of Affymetrix signals: 356-47515, median: 2046). Figure 4.13 

demonstrates the number of CLL samples that expressed the cognate 

transcript encoding these proteins. In addition, 10 examples of these proteins 

are shown in Table 4.6. This analysis increased the confidence of the protein 

identification based on a single peptide in a single experiment. 

 

4.2.6 Analysis of the most and the least frequently identified  

proteins 

   Different factors such as poor solubility or low abundance are 

associated with the difficulty of identifying some proteins by mass 

spectrometry (Issaq, 2001, Brewis and Brennan, 2010). To explore why some 

of the 900 proteins were identified in only one MALDI mass spectrometry 

analysis with a single peptide ID (108 proteins), independent published 

transcriptomic data of six CLL samples (Huttmann et al., 2006) were used. 

The Affymetrix signals of the mRNA encoding the 900 proteins were used to 

potentially reflect the abundance of their protein products. The list of the 900 

proteins were sorted in descending order according to the number of times the 

protein was detected in MALDI mass spectrometry analyses, followed by 

peptide count and best ion score (BIS) C.I.%. The Affymetrix signals (mean in 

six CLL samples) of the mRNA encoding the top proteins (n= 110: found in 

10-20 MALDI MS runs with multiple peptides) were compared to that of the  
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Figure 4.13: The number of CLL samples that express transcripts 

encoding the proteins that were identified with a single peptide in a 
single experiment. Transcriptomic data derived from 6 CLL samples were 
used to add more confidence to the protein identification based on one 
peptide in a single experiment (108 proteins). Of the 93 of these proteins that 
had match with Affymetrix IDs, 99% had a cognate transcript expressed in 
CLL samples. Transcriptomics data were taken from a previously published 
study (Huttmann et al., 2006).!
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Protein name!
Accession 

Number! TIS! BIS!
BIS 

C.I. %!

Average 
of 

Affymetrix 
signal   !

Sample 
count!

General vesicular transport 
factor p115! USO1_HUMAN! 102! 103! 100! 4091! 6!

Eukaryotic translation 
initiation factor 3 subunit I! EIF3I_HUMAN! 94! 94! 100! 3284! 6!

Chromatin target of PRMT1 
protein! CHTOP_HUMAN! 89! 89! 100! 3677! 6!

Mps one binder kinase 
activator-like 1B! MOL1B_HUMAN! 83! 83! 100! 11781! 6!

26S protease regulatory 
subunit 4! PRS4_HUMAN! 81! 81! 100! 3434! 6!

E3 SUMO-protein ligase 
RanBP2! RBP2_HUMAN! 47! 48! 99.92! 3644! 6!

Kinectin! KTN1_HUMAN! 48! 48! 99.92! 6707! 6!
Microsomal glutathione S-

transferase 3! MGST3_HUMAN! 48! 48! 99.92! 2141! 6!
NADH dehydrogenase 
[ubiquinone] 1 alpha 

subcomplex subunit 6! NDUA6_HUMAN! 48! 48! 99.91! 3118! 6!

RNA-binding protein 4! RBM4_HUMAN! 47! 47! 99.91! 2676! 6!

Table 4.6: Transcriptomic data of CLL cells support protein 

identifications based on one peptide in a single MALDI mass 
spectrometry analysis. !

Independently published transcriptomic data derived from six CLL samples 
(Huttmann et al,. 2006) were used to check whether CLL samples expressed 
the transcript encoding the proteins that were identified with a single peptide 
in a single experiment. The analysis showed that the vast majority of proteins 
that were identified with a single peptide in a single experiment had a 
transcript expressed in CLL samples. This table shows 10 examples of these 
proteins with the highest and lowest BIS C.I.%. TIS: total ion score, BIS: best 
ion score, BIS C.I.%: best ion score confidence interval percentage.!
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bottom proteins (n= 108: detected in a single MALDI MS run with a single 

peptide). The analysis demonstrated that the amount of mRNA of the most 

frequently detected proteins was 3.3 times more abundant than that of the 

least frequently detected proteins (p= 5.4 × 10−7 using unpaired Studentʼs t-

test; Figure 4.14). This analysis suggested that low abundance might have 

limited the identification of some proteins to only one MALDI mass 

spectrometry analysis based on a single peptide. 

 

4.2.7 NP40 and SDS fractions: similar number of MS/MS spectra 

with different number of protein identifications  

   More proteins were consistently identified in the NP40 fraction 

than in the SDS fraction. To understand why this might occur, Protein Pilot 

software was used to analyse the number of spectra utilised and the number 

of distinct peptides identified in four NP40 fractions and four SDS fractions. 

Interestingly, a similar number of spectra were identified in the NP40 fractions 

(54%) and in the SDS fractions (46%). However, the number of distinct 

peptides sequenced from the NP40 fractions was almost 1.7-fold greater 

compared to the SDS fractions (Table 4.7). This implies that the difference in 

protein IDs reflects the internal complexity and relative protein abundance 

rather than any technical difference caused by the differential detergent 

extraction. 



p= 5.4 × 10−7 #

n= 218 proteins#

Figure 4.14: Abundance of the most frequently and least frequently 

identified proteins. Affymetrix signals of the mRNA encoding the most and 
least frequently detected proteins were used to potentially indicate the 

abundance of these two groups of proteins. The analysis was conducted on 
218 proteins; 110 were found in 10-20 mass spectrometry analyses with 

multiple peptides, while 108 were detected in a single mass spectrometry 

analysis with a single peptide. This figure shows that the amount of mRNA 
of the most frequently detected proteins was 3.3 times more abundant than 

that of the least frequently detected proteins (mRNA average ± SD: 13062 
± 15670 versus 3991 ± 6246). The transcriptomics data were obtained from 

a previously published CLL study (Huttmann et al,. 2006) #
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Total numbers! % Total!

NP40 Fractions! SDS Fractions! NP40 Fractions! SDS Fractions!

Total spectra! 25910! 21236! 55! 45!

Non-empty spectra! 22777! 18782! 55! 45!

Spectra identified 
>95% confidence! 11063! 9387! 54! 46!

Distinct peptides 
>95%  confidence! 3282! 1959! 63! 37!

The proteomic analyses of either 4 pooled SDS fractions or 4 NP40 fractions 

were separately analysed using Protein Pilot software coupled with the 
Paragon search algorithm to obtain the statistical summary of the spectra and 

distinct peptides. This table shows similar numbers of utilised spectra in the 
NP40 fractions and the SDS fractions, but a greater number of distinct 

peptides were identified in the NP40 fractions compared to the SDS fractions!

Table 4.7: Summary of the total spectra and distinct peptides that were 

identified in the NP40 fractions and SDS fractions. !
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4.2.8 Localisation of proteins identified in the NP40 fractions and 

 SDS fractions 

   The rationale for developing the cellular fractionation method 

was that the NP40 fraction would be enriched with cytoplasmic proteins, while 

the SDS fraction would be enriched with nuclear proteins. This hypothesis 

was tested by using Gene Ontology data via the Quick GO-EBI tool 

(http://www.ebi.ac.uk/QuickGO/), to analyse the localisation of proteins that 

were uniquely found in each fraction (NP40 fractions = 541 proteins; SDS 

fractions = 138 proteins). Only proteins with one Gene Ontology location were 

analysed, as proteins with multiple locations would not be informative about 

the precision of the cellular fractionation procedure. Figure 4.15 shows that 

the NP40 fraction was predominantly comprised of proteins denoted 

cytoplasmic (48%) and also includes proteins denoted membrane (23%), 

nucleus (15%) and mitochondria (13%). In contrast, 82% of proteins from the 

SDS fraction were denoted as having a nuclear location.  

 

4.2.9   Relationship between Affymerix signal and the feasibility of 

identifying a protein by mass spectrometry 

   In an attempt to establish a relationship between a transcript 

level of a gene and the possibility of identifying its protein product by mass 

spectrometry, gene expression profiles of six CLL samples derived from good 

and poor prognosis patients (Huttmann et al., 2006) and the CLL proteomics 

data (900 proteins) generated in this study were used. The analysis was only 

conducted for genes with an absolute call “present” that were identified in at  
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Figure 4.15: Cell component analysis of identified proteins. 
Localisation of proteins that were uniquely identified in the NP40 fractions 
and in the SDS fractions was determined from Gene Ontology data via the 
Quick GO-EBI tool. The analysis confirmed that the NP40 fraction was 
enriched with cytoplasmic proteins, while the SDS fraction was enriched 
with nuclear proteins.!
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least three different CLL samples. After converting Affymetrix IDs into UniProt 

IDs, transcripts were grouped according to their Affymetrix signal into six 

groups (100000-33000, 33000-11000, 11000-3666, 3666-1200, 1200-400 and 

400-0). The CLL proteomics data were used to determine the percentage of 

identifications in each group (Figure 4.16). The analysis demonstrated that the 

higher the Affymetrix signal for a transcript, the greater the chance of 

identifying its cognate protein in the proteome list generated from my work. 

Table 4.8 shows the Affymetrix signal intensity of some genes known to be 

important in the pathology of CLL, and the probability of identifying their 

cognate protein products by MALDI mass spectrometry. 

 

4.2.10  Qualitative proteomics and transcriptomic data highlighted 

proteins that may be relevant to the pathology of CLL 

   To identify proteins that may be relevant to the pathology of CLL, 

the CLL qualitative proteome generated in this study was compared to 

independently published Affymetrix gene array data of normal B-cells and CLL 

cells. First, previously published transcriptomics datat of CLL cells (Huttmann 

et al., 2006) were used to indicate whether or not the list of proteins reported 

in this study (900 proteins) had transcript expression in CLL cells. Of the 900 

proteins, 125 did not have mach with the Affmetrix IDs and could not be used 

for the analysis. Of the rest (775 proteins), 759 proteins 98% had transcript 

expression in CLL cells (Appedix 2). 



Figure 4.16: Relationship between Affymerix signal and the feasibility of 

identifying a protein by mass spectrometry. Transcriptomic data derived 
from six CLL samples and my CLL proteomic data were used to investigate 

whether the Affymetrix signal for a mRNA can be informative of the possibility 
of identifying its cognate protein by mass spectrometry. The analysis 

suggested that the higher the Affymetrix signal for a transcript the greater the 

chance of identifying its protein. The transcriptomics data were obtained from 
previously published CLL study (Huttmann et al,. 2006) !
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Protein name!
Accession 

number !

Affymetrix 
signal!

Mean ± SD !

Probability of 
identification  by 

MALDI mass 
spectrometry!

Induced myeloid 
leukemia cell 

differentiation protein 
Mcl-1! MCL1_HUMAN! 7828 ± 2493! 22%!

Apoptosis regulator 
Bcl-2! BCL2_HUMAN! 5038 ± 1585! 22%!

Transcription factor 
p65! TF65_HUMAN! 1498 ± 332! 10%!

Nuclear factor NF-
kappa-B p50 subunit! NFKB1_HUMAN! 1334 ± 618! 10%!

CD38! CD38_HUMAN! 1081 ± 305 ! 3%!

Tyrosine-protein 
kinase ZAP-70! ZAP70_HUMAN! 788 ± 223 ! 3%!

Table 4.8: Affymetrix signal of mRNA encoding some important 

proteins in CLL and the probability of identifying these proteins by 
MALDI mass spectrometry!

Affymetrix signals of these genes were obtained from eight CLL samples 

(including poor and good prognosis CLL) (Huttmann et al., 2006). Protein 
name and accession number were obtained from !"#$%&'()* +&,-%#"*

.%',/&0%*1UniProt) http://www.uniprot.org/ . SD: standard deviation. !
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Next, transcriptomic data of four CLL samples (Huttmann et al., 

2006) and three normal B-cells samples (Hutcheson et al., 2008) were 

compared to identify genes that were preferentially expressed in CLL samples. 

The analysis was performed on genes with an absolute call of either “present” 

or “marginal”. The comparison showed that 6887 genes were expressed in 

both normal B-cells and CLL cells. In contrast, 503 genes appeared to be 

exclusively expressed in normal B-cells and 800 genes were specifically 

expressed in CLL cells (Figure 4.17). Encouragingly, CD5 was among the 800 

genes that were preferentially expressed in CLL cells. After determining genes 

that had the potential for being specific to CLL, my CLL proteomics data was 

utilised to investigate whether the protein products of these genes were 

evident in the CLL proteome. Of the 800 genes, only 20 (2.5%) encoded 

ptoteins were found in CLL proteome generated in this study (Figure 4.18). 

The absent expression of the 20 genes was confirmed in six normal B-cell 

samples that were examined by Hutcheson et al., (2008). The protein 

products of these 20 genes are shown in Table 4.9.  



503!
(6.14%)!

6887!
(84.1%)!

800!
(9.76%)!

Normal B-cells!
7390 mRNA!

CLL cells!
7687 mRNA!

Figure 4.17: Venn diagram of genes expressed by normal B-cells and 

those expressed by CLL cells. Affymetrix gene array data derived from 
three normal B-cell samples were compared with that of four CLL samples. 

This figure demonstrates that 800 genes were preferentially expressed in 
CLL cells. The normal B-cells transcriptomics data were taken from 

Hutcheson et al., (2008) and the CLL cells transcriptomics data were 

obtained from Huttmann et al., (2006).!

780! 20! 880!

CLL specific genes!
800 mRNA!

 Proteome of CLL!
900 proteins!

Figure 4.18: Venn diagram of CLL-specific mRNA and the CLL 

proteome generated in this study. In order to investigate whether the 
proteins encoded by the CLL-specific mRNA were identified in the CLL 

protein samples, the two data sets were compared with each other. The 
analysis showed that of the 800 mRNA, 20 were also detected in CLL 

samples at the protein level. The transcriptomics data were obtained from 

previously published CLL study (Huttmann et al,. 2006) !

Total number of genes: 8190!
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Protein name! Accession number! Biological process !
Protein 4.1! 41_HUMAN! Actin cytoskeleton organization!

Calponin-3! CNN3_HUMAN!
Actomyosin structure 

organization!
ATP-dependent RNA helicase 

DDX3Y! DDX3Y_HUMAN! Helicase activity!
2-oxoglutarate dehydrogenase, 

mitochondrial! ODO1_HUMAN! Metabolic process!
CWF19-like protein 1! C19L1_HUMAN! Metabolic process!

Tropomodulin-3! TMOD3_HUMAN! No information available!
Heterochromatin protein 1-binding 

protein 3! HP1B3_HUMAN! Nucleosome assembly!
Histone H1.4! H14_HUMAN! Nucleosome assembly!

Histone H4-like protein type G! H4G_HUMAN! Nucleosome assembly!
Pleckstrin homology domain-
containing family A member 2! PKHA2_HUMAN!

Positive regulation of cell-
matrix adhesion!

Exocyst complex component 5! EXOC5_HUMAN! Protein transport!
Ras-related protein Rab-8B! RAB8B_HUMAN! Protein transport!

Zinc finger protein Aiolos! IKZF3_HUMAN!
Regulation of apoptotic 

process!
3-ketoacyl-CoA thiolase, 

mitochondrial! THIM_HUMAN!
Negative regulation of 

apoptotic process!
Amyloid beta A4 precursor protein-

binding family B member 1-
interacting protein! AB1IP_HUMAN! Signal transduction!

Guanine nucleotide-binding protein 
subunit alpha-13! GNA13_HUMAN! Signal transduction!

Stathmin! STMN1_HUMAN! Signal transduction!

T-cell surface glycoprotein CD5! CD5_HUMAN!
Transmembrane signaling 

receptor activity!
Thyroid hormone receptor-

associated protein 3! TR150_HUMAN! Transcription cofactor activity!
Eukaryotic translation initiation 

factor 1A, Y-chromosomal! IF1AY_HUMAN!
Translation initiation factor 

activity!

Table 4.9: Proteins whose transcripts expression is restricted to CLL 

cells but not normal B-cells !

This table shows the protein products of the 20 genes that were specific to 
CLL cells but not normal B-cells. The biological process associated with 
these proteins was extracted from Gene Ontology using Quick GO-EBI tool 
and the list was sorted according to the biological processes. The 
transcriptomics data were obtained from previously published studies  
(Huttmann et al,. 2006, Hutcheson et al., 2008).!
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4.3  Discussion 

 After generating the NP40 fractions and the SDS fractions from 

good quality primary CLL samples, the next step was to introduce these 

proteins extracts into a proteomics workflow. In this project, a gel-free 

proteomics approach was chosen, in which the separation of digested 

proteins was performed using 2D nano-LC. This type of proteomics approach 

has the potential to identify a large number of proteins compared with gel-

based proteomics using 2DE. This project returned 900 proteins, whereas 

other CLL proteomics studies that used 2DE as a protein separation method 

identified much lower numbers of proteins (e.g. 17 proteins, 31 proteins and 

60 proteins) (Voss et al., 2001, Perrot et al., 2011, Cochran et al., 2003). 

 

 The application of 2D nano-LC using SCX and RP columns has 

gained popularity in the proteomics field as it separates peptides based on 

two different properties; charge and hydrophobicity (Yates et al., 2009). This 

in turn was shown to facilitate the identification of many proteins 

simultaneously (Yates et al., 2009, Washburn et al., 2001). In the context of 

CLL, only one previous CLL proteomics study exploited this technology to 

study crude membrane extracts leading to the identification of 695 proteins 

(Barnidge et al., 2005b). In this project, 2D nano-LC was an effective tool to 

sufficiently separate the peptide mixture to enable MALDI mass spectrometry 

to produce fragmentation data that facilitated the identification of 900 proteins. 
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 Of the published CLL proteomics studies, four out of seven 

identified hundreds of proteins. Miguet et al. (2009) reported 371 proteins 

based on one or more peptides with FDR of <1% in membrane extracts. In 

addition, Boyd et al., (2003) identified 500 proteins with multiple or single 

peptides in plasma membrane fractions. Barnidge et al. (2005a) reported 326 

proteins in cytosolic fractions and 212 proteins in membrane fractions. The 

total number of proteins was 538, but it was not specified whether this number 

excluded redundant proteins that were found in both fractions. None of these 

studies specified how many proteins were identified with multiple or single 

peptides. Furthermore, only the study by Miguet et al. (2009) reported the 

FDR of the detected proteins, which is important to indicate the percentage of 

proteins that may be falsely identified. In the absence of FDR calculations and 

statements about the number of proteins that were detected with either 

multiple or single peptides, it is difficult to evaluate the quality of the reported 

proteins by these studies. 

 

 The largest set of published CLL proteins was 695 that were 

detected with one or more peptides by Barnidge et al., (2005b) in crude 

membrane extracts. This study did not report the FDR of these proteins nor 

the number of proteins that were detected on the basis of multiple or single 

peptides. In contrast, in the current study, 900 proteins were reported, of 

which 625 were identified with multiple peptides and a minimum ion score of 

30 corresponding to an ion score confidence interval of 95% or more. This 

group of proteins had a 0% FDR. Furthermore, for the 275 proteins that were 
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identified with single peptides a more stringent ion score of 47 was applied 

corresponding to an ion score confidence interval of more than 99.91%. This 

limited the FDR in these 275 proteins to 3.2%. 

 

 Different proteomics approaches are complementary. In this 

regard, a study used different proteomics approaches (LC-ESI/MS/MS and 

LC-MALDI/MS/MS) to study the proteome of a biological sample showed an 

overlap of 63% between the results generated by these two different 

approaches (Bodnar et al., 2003). In addition, another group studied 

membrane proteins using three different proteomics approaches (2D LC-

ESI/MS/MS, LC-MALDI/MS/MS and 1DE-MS or 1DE-MS/MS) and found an 

overlap of 9% in the proteins identified by these approaches (Zhang et al., 

2004). In the context of the published CLL proteome, 50% of the CLL proteins 

reported by Miguet et al. (2009) using 1DE-1D-LC/ESI/MS/MS were detected 

in the present study. In addition, 27% of CLL proteins reported by Barnidge et 

al. (2005b) using 2D-LC/ESI/MS/MS were identified in my study. From this 

one may conclude that different proteins can be identified using different 

proteomics approaches and thus exploiting a combination of different 

approaches can be an effective strategy to increase proteome coverage. 

 

 The increase in protein abundance was previously shown to be 

associated with an increase in the proteolytic peptides and thus MS/MS 

spectra (Liu et al., 2004). This current study showed that proteins that were 

identified with a large peptide count or TIS were those that were frequently 
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identified in MALDI mass spectrometry analyses and vice versa. In fact, there 

was a good correlation between the frequency at which proteins were 

identified by MALDI mass spectrometry and their peptide counts or TIS. This 

might indicate that the proteins that were commonly identified in MALDI mass 

spectrometry were those that were found in high abundance in CLL cells, 

whereas proteins that were rarely identified by MALDI mass spectrometry 

were those that exist at low concentrations in CLL cells. This was supported 

by the observation that the mRNA expression encoding the least frequently 

identified proteins were three times less than that encoding the most 

frequently identified proteins. 

 

 Given the nature of the proteome complexity, some proteins 

were identified with the best criteria and some were identified with the least, 

but acceptable, criteria. The latter were those protein identified with a single 

peptide in a single MALDI mass spectrometry analysis (108 proteins). CLL 

transcriptomic data (Huttmann et al., 2006) were found to be very useful to 

explore how accurate this type of protein identification was likely to be. The 

analysis demonstrated that CLL cells expressed the cognate transcript of the 

vast majority (99%) of these proteins. In addition, transcriptomic data 

suggested that the low abundance of these proteins restricted their 

identification by MALDI mass spectrometry to only one analysis based on a 

single peptide. 
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 This chapter has described a method for calculating the 

probability of identifying a protein by mass spectrometry based on the 

Affymetrix signal, i.e. relative transcript level. Although mRNA quantity per se 

is not sufficient to predict protein abundance (Gygi et al., 1999b), the analysis 

showsed that proteins with high levels of transcript were more likely to be 

identified by mass spectrometry. Almost 64% of proteins with high 

transcription signals (Affymetrix signal: 33,000-100,000) were identified by 

mass spectrometry, whereas only 2% of proteins with very low transcript 

signals (Affymetrix signal: ≤400) were identified using this approach. Some 

proteins known to be important in the pathology of CLL, for example, CD38 

and ZAP-70, have low levels of Affymetrix signal (1081±305, 788±223 

respectively) (Huttmann et al., 2006). Thus, the probability of finding these 

proteins by mass spectrometry was very low (3%). This analysis can be useful 

to indicate whether particularly target proteins are likely to be identified by 

mass spectrometry before starting a targeted proteomics project. 

 

   In this study, a strategy was described for combining 

transcriptomic and proteomics data to identify proteins with potential 

relevance to the pathology of CLL. By integrating my CLL proteomics data 

with published CLL and normal B-cells transcriptomic data (Huttmann et al., 

2006, Hutcheson et al., 2008), a list of 20 proteins that were expressed in CLL 

but not detected in the normal B-cell transcriptome were generated. 
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   Some of these 20 proteins were linked to an important biological 

role in cancer. For example, pleckstrin homology domain-containing family A 

member 2 (TAPP-2) was reported to participate in phosphatidylinositol 3-

kinase (PI3K) signalling, an important pathway in B-lymphocyte activation and 

proliferation, following BCR stimulation (Marshall et al., 2002). Interestingly, 

TAPP-2 protein was reported to associate with poor prognosis CLL (ZAP-70+ 

CLL and U-CLL) (Costantini et al., 2009). In addition, zinc finger protein Aiolos 

was linked to apoptosis, where it induces BCL2 expression and prevents cell 

death in T-cells (Romero et al., 1999). Furthermore, Stathmin was shown to 

be involved in cell differentiation and proliferation and is highly expressed in a 

number of different types of cancer such as ovary cancer and breast cancer 

(Sherbet and Cajone, 2005, Price et al., 2000, Curmi et al., 2000). This may 

indicate that this strategy is useful to highlight proteins with potential 

involvement in CLL using proteomics. Of these 20 proteins, 2 were selected 

on the basis of the quality of their mass spectrometry data for further study on 

normal B-cells and CLL cells (see chapter six). 

 

   A successful qualitative proteomics workflow that allowed 

identification of 900 proteins in CLL samples was developed in this chapter. 

The next step was to modify this workflow to allow relative quantification of 

proteins in the NP40 fractions and the SDS fractions from poor prognosis CLL 

versus good prognosis CLL. The next chapter explains the processes that 

allowed the identification of proteins with aberrant expression in the two forms 

of CLL. 
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5.1 Introduction 
   Although genetic predisposition contributes to the diverse clinical 

outcomes seen in CLL, differential protein expression has been shown to 

impact heavily on the clinical progression and response to treatment in this 

disease. In this regard, anti-apoptotic proteins and the NF-κB transcription 

factor subunits have been shown to be important (Kitada et al., 1998, Pepper 

et al., 2008, Hewamana et al., 2008). These studies all used conventional 

approaches based on detection of single proteins using specific antibodies. In 

contrast, quantitative proteomics approaches allow simultaneous global 

relative quantification of expressed proteins in a particular disease tissue; this 

has the potential to elucidate more of the key proteins driving the pathology of 

a disease such as CLL. Four CLL proteomics studies used different 

quantitative proteomics approaches to compare the proteome of poor 

prgnosis CLL with that of good prognosis CLL and reported number of 

proteins with possible involvment in CLL (discussed in detailes in 1.3) 

 

 The aim of the quantitative proteomics analysis in this chapter 

was to compare the proteomics expression profiles of the aggressive and 

indolent forms of CLL. CD38 expression was used to discriminate between 

poor prognosis CLL and good prognosis CLL. However, fuether analyses on 

the basis of other prognostic markers (ZAP-70, mutational status of IGHV 

genes and CLL satges) were also conducted 
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 Given the success of the qualitative proteomics workflow 

(described in chapter four), it was modified by introducing iTRAQ labelling of 

the NP40 fractions and the SDS fractions to enable relative quantification of 

CLL proteins. Figure 5.1 illustrates the workflow that was used for the 

quantitative proteomics analysis. 

 

5.2 Results 

5.2.1 Quantification of CLL proteins in relation to a reference 

sample  

 To perform a relative quantification analysis on the proteome of 

poor prognosis CLL (CD38+ CLL) and on the proteome of good prognosis CLL 

(CD38– CLL), the experiments were designed so that the proteome of both 

groups of patient samples would be compared to one reference sample. One 

reference sample was used for the analysis of the NP40 fractions and another 

reference sample was used for the SDS fractions analysis. The NP40 

reference sample was prepared from the NP40 fraction of one CLL sample. 

However, in the course of optimising the quantitative proteomics workflow, the 

SDS reference sample was prepared from a mixture of the SDS fractions from 

the 12 CLL samples (poor prognosis and good prognosis CLL). After 

generating the relative quantification data of the CLL proteome, relative 

protein expression of poor prognosis CLL samples were compared to that of 

good prognosis CLL samples to identify proteins with altered expression in the 

two forms of CLL. 



Figure 5.1: Quantitative proteomics workflow. Equivalent amounts of 
protein from CD38+ CLL and CD38– CLL samples (NP40 fractions or SDS 
fractions) with a reference sample were separately precipitated using the 
2D Clean-Up kit and digested with trypsin. The peptides were labelled with 
4-plex iTRAQ reagents. Labelled samples were combined and separated 
on 2D nano-LC followed by analysis by MALDI mass spectrometry. 
Generated MS/MS spectra were searched against the Swiss-Prot database 
using ProteinPilot with the Paragon and ProGroup algorithms.!

Protein precipitation !

Protein digestion !

MALDI TOF-TOF mass spectrometry!

Bioinformatics and data analysis!

2D nano-LC!

4-plex iTRAQ labelling!
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5.2.2   Sample labelling with iTRAQ reagents  

 Following protein precipitation and protein digestion by trypsin, 

peptides were labelled with iTRAQ reagents. In each iTRAQ LC-MALDI mass 

spectrometry experiment equivalent amount of peptide (20μg) from either the 

NP40 fraction or SDS fraction of three different CLL samples and the 

corresponding reference sample were labelled with iTRAQ reagents. 

Reference samples were consistently labelled with iTRAQ regents 114 or 117 

(117 was used to label the NP40 reference sample and 114 was used to label 

the SDS reference sample). In contrast, an effort was made to avoid using 

one iTRAQ reagent to consistently label one group of the CLL samples (either 

CD38+ or CD38−). This was done to avoid the artifact that might result from 

constantly using a particular label for CD38+ or CD38– CLL samples. Figure 

5.2 demonstrates the different ways used for iTRAQ labelling.  

 

5.2.3 Data analysis 

 Following iTRAQ LC-MALDI mass spectrometry experiments, 

MS/MS spectra from labelled peptides were searched against the Swiss-Prot 

database using ProteinPilot 2.0.1 software (Applied Biosystems) with the 

Paragon and ProGroup algorithms. The search was restricted to human 

taxonomy with trypsin specificity. Cysteine alkylation was performed with 

MMTS. Two different scores were reported for each protein: unused 

ProtScore and total ProtScore. The unused ProtScore specifically measures 

all of the peptide evidence for a protein that does not contribute to the  
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Figure 5.2: Different iTRAQ labelling of CLL samples. iTRAQ 

reagents were used in a different order to label the NP40 fractions of 
CD38+ CLL samples and CD38− CLL samples (A and B). Similarly, 

iTRAQ reagents were used in different order to label the SDS fractions 
of CD38+ CLL samples and CD38− CLL samples (C and D).!
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 identification of a higher ranked protein. To consider a protein for further 

analysis it must be identified with a minimum unused ProtScore >1.3 and at 

least one peptide with a 95% confidence score.  

 

5.2.4 Relative quantification of the CLL proteome 

 In total 12 iTRAQ LC-MALDI mass spectrometry runs were 

performed for 12 CLL samples. Six runs were carried out for the NP40 

fractions and six runs were performed for the SDS fractions. The experiments 

were designed to study the relative protein expression of six CD38+ CLL 

samples versus six CD38– CLL samples. In total, 655 proteins were quantified 

in at least three CLL samples with one peptide or more (confidence score 

≥95%) and unused ProtScore >1.3 (Appendix 3). These proteins were 

identified with FDR 3%. From the NP40 fractions 488 proteins were quantified, 

whereas 288 proteins were quantified in the SDS fractions. 121 proteins were 

quantified in both fractions (Figure 5.3A). Of the 655 proteins, 386 proteins 

(59%) were identified with 2 peptides or more, while the rest (277 proteins, 

41%) were identified with a single peptide (Figure 5.3B and C). The peptide 

count presented here was the mean peptide count in six iTRAQ LC-MALDI 

experiments with either NP40 fractions or SDS fractions. 

 

5.2.5 Demonstration of the relative quantification of CLL proteins 

using iTRAQ reagents  

 Identification and relative quantification of labelled peptides was 

carried out using MALDI mass spectrometry and ProteinPilot software coupled 
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Figure 5.3: Venn diagram of proteins that were identified and 

quantified using iTRAQ reagents and LC-MALDI mass spectrometry 
in CLL samples. The total number of non redundant proteins that were 
identified and quantified in the NP40 fractions and the SDS fractions of 
three or more CLL samples was 655 proteins (A). Of these proteins, 386 
(59%) were identified with 2 or more peptides (B and C).!
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with the Paragon and ProGroup algorithms. The assessment of protein 

expression in CLL samples was performed on the basis of the relative 

quantification of their corresponding peptides. Two examples have been 

chosen to illustrate the steps involved in quantification of peptides and 

proteins. From the NP40 fractions, Table 5.1 shows an example of the relative 

quantification of peptides that were used to measure the relative abundance 

of nucleophosmin in three CLL samples. The MS/MS spectrum of one of 

these peptides is shown in Figure 5.4. From the SDS fractions, Table 5.2 

shows an example of the relative quantification of peptides that were used to 

evaluate the expression of splicing factor proline- and glutamine-rich in three 

CLL samples. The MS/MS spectrum of one of these peptides is shown in 

Figure 5.5. 

 

 Following the relative quantification of the proteins in all tested 

CLL samples, the protein expression of the poor prognosis CLL samples was 

compared with that of the good prognosis CLL samples. This was performed 

in order to identify proteins with altered expression in the two forms of CLL. 

The relative quantification of nucleophosmin and PSF in the 12 CLL samples 

that were analysed in this study is shown in Table 5.3. 

 

 It is worth mentioning here that not all peptides that were used 

for protein identification were used for protein relative quantification as some 

of these peptides contributed to the identification of multiple proteins (common 

peptides). This often happened when homologous proteins such as histone  



iTRAQ relative quantification!

Peptide sequence! Confidence %! CD38+ CLL! CD38+ CLL! CD38− CLL!
GPSSVEDIK ! 99! 0.85! 0.98! 0.83!
GPSSVEDIK ! 99! 0.87! 0.98! 0.74!
GPSSVEDIK ! 99! 0.75! 0.86! 0.76!
GPSSVEDIK ! 99! 0.80! 0.94! 0.72!
GPSSVEDIK ! 99! 0.73! 0.92! 0.75!

MQASIEK ! 99! 0.93! 0.98! 0.81!
MQASIEK ! 99! 0.94! 0.99! 0.73!
MQASIEK ! 99! 0.88! 0.85! 0.72!

MTDQEAIQDLWQWR ! 99! 0.99! 1.27! 1.06!
MTDQEAIQDLWQWR ! 99! 0.97! 1.10! 0.90!
VDNDENEHQLSLR ! 99! 0.82! 1.10! 0.79!
VDNDENEHQLSLR ! 99! 0.83! 0.89! 0.87!

FINYVK ! 98! 0.78! 0.97! 0.71!
FINYVK ! 98! 0.71! 0.85! 0.66!
FINYVK ! 97! 0.97! 1.04! 0.86!
FINYVK ! 97! 1.01! 1.13! 0.81!

GPSSVEDIK ! 87! 1.11! 0.99! 1.27!
Protein nucleophosmin ! Identified with 6 different peptides! 0.82! 0.94! 0.76!

Table 5.1: Examples of relative quantification of peptides that were 

used to determine the relative expression of nucleophosmin in CLL 
samples (NP40 fractions)!

Identification and relative quantification of labelled peptides were 

performed by MALDI mass spectrometry and the ProteinPilot software 
using Paragon and ProGroup algorithms. This table shows relative 

quantification of peptides that were mapped to nucleophosmin. Relative 
quantification of these peptides were used to determine the relative 

quantification of nucleophosmin in the NP40 fractions of CLL samples. 

The examples shown in this table were extracted from one iTRAQ LC-
MALDI mass spectrometry experiment that was carried out on the NP40 

fractions of three CLL samples relative to the NP40 reference sample. !
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K[IT4]                          I               D              E             V           S          S   P                    G !
(A)!

(B)!

Figure 5.4: Identification and relative quantification of a specific peptide 

in nucleophosmin. Following separation of labelled peptides by 2D nano-LC, 
they were analysed by MALDI mass spectrometry and ProteinPilot software 

using the Paragon and ProGroup algorithms. This figure shows MS/MS spectra 
of a specific peptide derived from nucleophosmin (GPSSVEDIK) (A) as well as 

the relative quantification of this peptide in the NP40 fractions of three CLL 

samples in relation to the NP40 reference sample (B). For simplicity only y ions 
were shown in these MS/MS spectra. The sequence identified in the MS/MS 

spectra is read from the C-terminus. !

114 and 115: two CD38+ CLL samples!

116: CD38− CLL sample!

117: NP40 reference sample!
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iTRAQ relative quantification!
Peptide sequence! Confidence %! CD38+ CLL! CD38+ CLL! CD38− CLL!

AELDDTPMR! 99! 1.40! 1.38! 1.06!
ANLSLLR! 99! 1.41! 1.36! 1.43!

CSEGVFLLTTTPR! 99! 0.86! 1.06! 0.88!
EEEMMIR! 99! 0.67! 0.97! 0.86!

FAQHGTFEYEYSQR! 99! 0.78! 1.49! 1.64!
FATHAAALSVR! 99! 1.12! 1.33! 1.20!
FATHAAALSVR! 99! 0.97! 1.51! 1.38!
FATHAAALSVR! 99! 1.04! 1.23! 1.19!

FGQGGAGPVGGQGPR! 99! 1.11! 1.29! 1.40!
FGQGGAGPVGGQGPR! 99! 1.23! 1.24! 1.12!
FGQGGAGPVGGQGPR! 99! 0.98! 1.16! 1.20!
FGQGGAGPVGGQGPR! 99! 1.15! 1.28! 1.22!

GFGFIK! 99! 0.94! 1.57! 1.52!
RMEELHNQEMQK! 99! 0.76! 0.79! 1.07!
SPPPGMGLNQNR! 99! 0.74! 1.03! 1.30!

YGEPGEVFINK! 99! 0.87! 1.35! 1.18!
YGEPGEVFINK! 99! 0.97! 1.50! 1.25!

ANLSLLR! 98! 0.79! 1.27! 0.98!
SPPPGMGLNQNR! 98! 0.88! 1.00! 1.26!

EMEEQMR! 80! 0.83! 0.96! 1.21!
Protein PSF! Identified with 13 different peptides! 0.97! 1.40! 1.35!

Table 5.2: Examples of relative quantification of peptides that were 

used to measure the relative expression of splicing factor proline- 
and glutamine-rich (PSF) (SDS fractions of CLL samples).!

Identification and relative quantification of labelled peptides were 

performed by MALDI mass spectrometry and ProteinPilot software using 
the Paragon and ProGroup algorithms. This table shows relative 

quantification of peptides that were mapped to PSF. Relative 
quantification of these peptides were used to determined the relative 

quantification of PSF in the SDS fractions of CLL samples. The examples 

shown in this figure were extracted from one iTRAQ LC-MALDI mass 
spectrometry experiment that was carried out on the SDS fractions of 

three CLL samples and the SDS reference sample. !
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R              P     G        Q        G    G         V  P         G       A G G           Q G F!

114.0831!

115.0808!
116.0856!

117.0889! 114: SDS reference sample!

115 and 116: two CD38+ CLL samples!

 117: CD38− CLL sample!

(A)!

(B)!

Figure 5.5: Identification and relative quantification of a specific peptide 

in splicing factor, proline- and glutamine-rich (PSF). Following separation 
of labelled peptides by 2D nano-LC,  they were analysed by MALDI mass 

spectrometry and ProteinPilot software using the Paragon and ProGroup 
algorithms. This figure shows MS/MS spectra of a specific peptide in PFS 

(FGQGGAGPVGGQGPR) (A) as well as the relative quantification of this 

peptide in the SDS fractions of three CLL samples in relation to the SDS 
reference sample (B). For simplicity only y ions were shown in these MS/MS 

spectra. The sequence identified in the MS/MS spectra is read from the C 
terminus.!
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H1.2, histone H1.4 and histone H1.5 were identified and quantified in CLL 

samples. In this case the relative quantification of these proteins was 

restricted to the relative quantification of their specific peptides. For example, 

while 13 peptides were used for identification of histone H1.2, only two 

peptides were shown to be specific to this protein and thus were used for the 

relative quantification of histone H1.2 (Table 5.4). This was an essential 

quality control step to avoid false positive identification of proteins with altered 

expression based on the relative quantification of common peptides. 

 

5.2.6 Criteria for selecting altered proteins in the two forms of 

CLL 

 For a protein to be reported with altered expression in CLL 

samples it had to satisfy four criteria. First it must have been identified with at 

least one specific peptide (95% confidence score). In addition, a protein must 

have been quantified in at least five different CLL samples. A protein must 

have had an iTRAQ value ≤0.80 or ≥1.25, representing ≥20% change in 

protein expression, and a significant p value (≤0.05). Finally the protein must 

not be one of the contaminating proteins that are commonly identified in mass 

spectrometry. This study identified proteins that were likely to be detected in 

CLL samples dute to contamination during sample preparation or by other 

blood cells. These proteins included different types of keratin, hemoglobin 

subunits, neutrophil defensin 3, neutrophil elastase macrophage migration 

inhibitory factor. 



Name! Accession Number ! Peptides count (95% confidence)! Specific peptides!

Histone H1.2 ! H12_HUMAN! 13! 2!

Histone H1.4! H14_HUMAN! 11! 1!

Histone H1.5 ! H15_HUMAN! 4! 2!

Table 5.4: Examples of homologous proteins that were 

identified and quantified in CLL samples!

Following identification of labelled peptides by MALDI mass 

spectrometry and ProteinPilot software using the Paragon and 
ProGroup algorithms, the software used these peptides to indicate 

their corresponding proteins. Some of these peptides were specific 
to their proteins, while some others were common to different 

proteins (usually proteins that belonged to the same family). While 

relative quantification was performed on both common and specific 
peptides, only relative quantification data derived from specific 

peptides were used to indicate the relative abundance of their 
corresponding proteins in CLL samples. The examples shown in 

this Table were extracted from one iTRAQ LC-MALDI mass 

spectrometry experiment (SDS fraction).!

164 



! "&%!

5.2.7 Analysis of protein expression in CLL samples based on 

CD38 expression 

 CD38 expression is one of the prognostic markers in CLL used 

to help predict the clinical outcome of the disease. In this regard, CLL patients 

with high expression of CD38 on their CLL cells are characterised by an 

aggressive clinical course and worse outcome compared to patients with low 

or no expression of CD38 on their CLL cells (Durig et al., 2002, Pepper et al., 

2012). Therefore, CD38 expression was used to identify CLL patients with 

poor prognosis or good prognosis.  

 

 Protein expression of six CD38+ CLL samples (CD38 expression 

>40%) was compared to that of six CD38− CLL samples (CD38 expression 

<5%). The analysis was separately done on the NP40 fractions and the SDS 

fractions. In total this study included 416 proteins as they were quantified in 

five or more samples. Figure 5.6 demonstrates the protein expression ratio of 

CD38+ CLL samples to CD38– CLL samples together with statistical 

confidence scores that indicate whether the change in protein expression 

between the two groups of samples is significant. This score was calculated 

as follows: (1 − p value) × 100, where the p value was generated using an 

unpaired t-test. The majority of quantified proteins in CD38+ CLL samples and 

CD38– CLL samples (407 proteins, 97.8%) did not show a significant change 

in their expression. However, nine proteins had iTRAQ values ≤0.80 or ≥1.25 

with a significant p value. Five of these were found in the NP40 fraction 

(Figure 5.6A) and four were found in the SDS fraction (Figure 5.6B). These  



Figure 5.6: Protein expression of CD38+ CLL samples (poor 

prognosis) and CD38– CLL samples (good prognosis). The analysis 
was performed on the NP40 fractions (A) and on the SDS fractions (B). 

The protein expression ratio was determined by dividing the proteomic 
relative quantification of CD38+ CLL samples by that of CD38– CLL 

samples. Confidence % was generated using the calculated p value, 

where p=0.05 = 95% confidence. The blue dots represent proteins with 
iTRAQ values ≤0.80 or ≥1.25 and ≥95% confidence.#
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proteins are labelled in blue in Figure 5.6. Other proteins (19 proteins in the 

NP40 fractions and 31 proteins in the SDS fractions) were observed with 

iTRAQ values ≤0.80 or ≥1.25, yet their corresponding p value was >0.05 

(confidence <95%) and thus were not included with the final list of the altered 

proteins in CD38+ CLL samples compared to CD38− CLL samples. The 

reason why the altered expression of these proteins was not statistically 

significant (p >0.05) was because their expression was not consistently up-

regulated or down-regulated in CD38+ CLL samples compared with CD38– 

CLL samples. Table 5.5 and 5.6 show proteins with iTRAQ value ≤0.80 or 

≥1.25 in the two groups of CLL samples both with and without a significant p 

value. 

 

 Of the nine proteins, six proteins satisfied the four criteria that 

were set to consider a protein with altered expression in CLL samples. From 

the NP40 fractions TCL1 showed higher expression in CD38+ CLL samples 

(p= 0.05, n= 11, Figure 5.7A) while 14-3-3 protein (p= 0.05, n= 6, Figure 5.7B) 

and Septin-7 (p= 0.01, n= 6, Figure 5.7C) were found with lower expression in 

CD38+ CLL samples. From the SDS fractions, lower expression was observed 

for Histone H2B type 2-E (p= 0.01, n= 6, Figure 5.7D), Splicing factor, 

arginine/serine-rich 2 (p= 0.005, n= 6, Figure 5.7E) and Histone H4 (p= 0.05, 

n= 12, Figure 5.7F) in CD38+ CLL samples. These six proteins were identified 

with one or more specific peptides (Appendix 4). In addition, examples of the 

relative quantification of TCL-1 and histone H4 in CLL samples are 

demonstrated in  Appendices 5-9. 



Protein Name! Accession 
Number!

CD38+!

Mean!
CD38+

SD!
CD38−
Mean!

CD38− 

SD!
CD38+/
CD38−!

Confidence 
%!

P 
value!

Sample!
count!

Altered proteins with significant p value!

Septin-7 ! SEPT7_HUMAN! 0.89! 0.05! 1.11! 0.04! 0.79! 99.34! 0.01! 6.00!

T-cell leukemia/
lymphoma 
protein 1A ! TCL1A_HUMAN! 1.99! 0.70! 1.20! 0.17! 1.66! 96.28! 0.04! 11.00!

14-3-3 protein 
theta ! 1433T_HUMAN! 0.95! 0.12! 1.20! 0.01! 0.79! 95.05! 0.05! 6.00!

Altered proteins but with insignificant p value !

40S ribosomal 
protein S13 ! RS13_HUMAN! 0.98! 0.21! 1.23! 0.35! 0.80! 81.83! 0.18! 11.00!

40S ribosomal 
protein S14 ! RS14_HUMAN! 1.03! 0.09! 1.28! 0.16! 0.80! 85.85! 0.14! 5.00!

Heterogeneous 
nuclear 

ribonucleoprotein
s C1/C2 ! HNRPC_HUMAN! 1.27! 0.31! 1.02! 0.25! 1.25! 82.26! 0.18! 11.00!

Protein S100-A8 ! S10A8_HUMAN! 1.90! 1.21! 1.50! 0.45! 1.27! 50.11! 0.50! 11.00!

HLA class II 
histocompatibility 
antigen, DRB1-4 

beta chain ! 2B14_HUMAN! 1.49! 0.57! 1.15! 0.25! 1.29! 58.44! 0.42! 5.00!

60S ribosomal 
protein L7 ! RL7_HUMAN! 1.07! 0.13! 0.82! 0.16! 1.30! 82.29! 0.18! 5.00!

Heterogeneous 
nuclear 

ribonucleoprotein
s A2/B1 ! ROA2_HUMAN! 1.53! 0.78! 1.15! 0.26! 1.33! 67.42! 0.33! 11.00!

Table 5.5: Proteins that had iTRAQ values ≤0.80 or ≥1.25, with or without 

significant p values, in the NP40 fractions of CD38+ CLL samples 
compared to CD38− CLL samples!

Relative protein expression in the CD38+ CLL samples and CD38− CLL samples 
was quantified using the iTRAQ labelling technique followed by LC-MALDI mass 
spectrometry and ProteinPilot analysis. Data were transferred to an Excel 
spreadsheet for further analysis. Mean, standard deviation (SD) and p value 
(unpaired t-test) of iTRAQ data were calculated in the two groups of samples 
(CD38+ CLL versus CD38− CLL). This table shows proteins with consistently 
altered expression in the CD38+ CLL samples compared to CD38− CLL samples 
(Blue coloured). In addition, it shows proteins with inconsistently altered 
expression in the CD38+ CLL samples compared to CD38− CLL samples (Black 
coloured). CD38+/CD38–: protein expression of CD38+ samples versus CD38– 
CLL samples.!
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Protein Name! Accession 
Number!

CD38+!

Mean!
CD38+

SD!
CD38−
Mean!

CD38− 

SD!
CD38+/
CD38−!

Confidence 
%!

P 
value!

Sample!
count!

Altered proteins but with insignificant p value !

CapZ-interacting 
protein ! CPZIP_HUMAN! 1.20! 0.04! 0.87! 0.38! 1.39! 88.23! 0.12! 6.00!

Histone H4 ! H4_HUMAN! 1.46! 0.64! 1.04! 0.12! 1.41! 81.38! 0.19! 11.00!

Histone H2A.J ! H2AJ_HUMAN! 1.39! 0.67! 0.98! 0.13! 1.41! 78.25! 0.22! 11.00!

Putative 
heterogeneous 

nuclear 
ribonucleoprotei

n A1-like 3 ! RA1L3_HUMAN! 1.64! 1.10! 1.10! 0.16! 1.48! 68.72! 0.31! 11.00!

Protein S100-A9 ! S10A9_HUMAN! 1.99! 1.40! 1.33! 0.58! 1.49! 64.44! 0.36! 11.00!

Table 5.5 continued: Proteins that had iTRAQ values ≤0.80 or ≥1.25, with 

or without significant p values, in the NP40 fractions of CD38+ CLL 
samples compared to CD38− CLL samples!
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Protein Name!
Accession 

Number!
CD38+ 
Mean!

CD38+ 
SD!

CD38– 
Mean!

CD38– 
SD!

CD38+/
CD38-!

Confidence
%!

p 
value !

Sample 
count!

Altered proteins with significant p value!

Histone H4 ! H4_HUMAN! 0.92! 0.23! 1.24! 0.25! 0.74! 95.22! 0.05! 12!

Histone H2B type 
1-L ! H2B1L_HUMAN! 0.77! 0.22! 1.24! 0.10! 0.63! 98.03! 0.02! 6!

Histone H2B type 
2-E ! H2B2E_HUMAN! 0.66! 0.14! 1.36! 0.18! 0.48! 99.12! 0.01! 6!

Splicing factor, 
arginine/serine-

rich 2 ! SFRS2_HUMAN! 1.14! 0.12! 1.69! 0.10! 0.68! 99.42! 0.01! 6!

Altered proteins but with insignificant p value !

Triosephosphate 
isomerase ! TPIS_HUMAN! 0.83! 0.81! 0.48! 0.23! 1.71! 39.11! 0.61! 6!

Tyrosine-protein 
phosphatase non-

receptor type 6 ! PTN6_HUMAN! 0.78! 0.50! 0.55! 0.29! 1.44! 41.72! 0.58! 6!

14-3-3 protein 
zeta/delta ! 1433Z_HUMAN! 0.94! 0.45! 0.64! 0.02! 1.46! 56.62! 0.43! 6!

Hematopoietic 
lineage cell-

specific protein ! HCLS1_HUMAN! 0.95! 0.35! 0.71! 0.02! 1.33! 58.18! 0.42! 6!

Lactotransferrin ! TRFL_HUMAN! 0.87! 0.65! 0.43! 0.07! 2.05! 58.79! 0.41! 6!

Cathepsin G ! CATG_HUMAN! 0.98! 0.50! 0.63! 0.16! 1.56! 58.81! 0.41! 6!

Myeloperoxidase ! PERM_HUMAN! 0.83! 0.52! 0.58! 0.20! 1.43! 60.40! 0.40! 9!

Heat shock 
protein HSP 90-

alpha ! HS90A_HUMAN! 0.97! 0.41! 0.62! 0.20! 1.57! 66.12! 0.34! 6!

Azurocidin ! CAP7_HUMAN! 0.83! 0.53! 0.38! 0.04! 2.18! 67.33! 0.33! 6!

Histone H2B type 
1-D ! H2B1D_HUMAN! 1.01! 0.30! 0.72! 0.05! 1.39! 71.71! 0.28! 6!

Histone H2A.J ! H2AJ_HUMAN! 0.54! 0.33! 1.03! 0.49! 0.52! 72.29! 0.28! 6!

Spectrin alpha 
chain, brain ! SPTA2_HUMAN! 0.85! 0.03! 1.06! 0.26! 0.80! 76.08! 0.24! 6!

RNA-binding 
protein 14 ! RBM14_HUMAN! 0.83! 0.23! 1.14! 0.33! 0.73! 76.36! 0.24! 6!

Table 5.6: Proteins that had iTRAQ values ≤0.80 or ≥1.25, with or without 

significant p values, in the SDS fractions of CD38+ CLL samples 
compared to CD38− CLL samples.!

This table shows proteins with consistently altered expression in the CD38+ 

CLL samples compared to CD38− CLL samples (Blue coloured). In addition, it 
shows proteins with inconsistently altered expression in the CD38+ CLL 

samples compared to CD38− CLL samples (Black coloured). SD: standard 
deviation, CD38+/CD38–: protein expression of CD38+ samples versus CD38– 

CLL samples!
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Protein Name!
Accession 

Number!
CD38+ 
Mean!

CD38+ 
SD!

CD38– 
Mean!

CD38– 
SD!

CD38+/
CD38-!

Confidence
%!

p 
value !

Sample 
count!

Altered proteins but with insignificant p value !

Heterogeneous 
nuclear 

ribonucleoproteins 
A2/B1 ! ROA2_HUMAN! 1.09! 0.43! 1.37! 0.18! 0.80! 82.66! 0.17! 12!

Heterogeneous 
nuclear 

ribonucleoprotein 
K ! HNRPK_HUMAN! 0.98! 0.37! 1.28! 0.12! 0.77! 82.90! 0.17! 9!

60S acidic 
ribosomal protein 

P0-like ! RLA0L_HUMAN! 0.99! 0.20! 0.74! 0.04! 1.34! 83.36! 0.17! 6!

Heterogeneous 
nuclear 

ribonucleoprotein 
D0 ! HNRPD_HUMAN! 1.01! 0.37! 1.29! 0.25! 0.78! 84.64! 0.15! 12!

Heterogeneous 
nuclear 

ribonucleoprotein 
A1 ! ROA1_HUMAN! 0.99! 0.38! 1.28! 0.21! 0.77! 86.45! 0.14! 12!

High mobility 
group protein B2 ! HMGB2_HUMAN! 0.75! 0.17! 1.00! 0.25! 0.76! 87.05! 0.13! 9!

Heterogeneous 
nuclear 

ribonucleoprotein 
G ! HNRPG_HUMAN! 0.97! 0.42! 1.31! 0.22! 0.74! 88.38! 0.12! 12!

Heterogeneous 
nuclear 

ribonucleoprotein 
A3 ! ROA3_HUMAN! 1.13! 0.54! 1.72! 0.38! 0.66! 89.42! 0.11! 9!

Thyroid hormone 
receptor-

associated protein 
3 ! TR150_HUMAN! 0.89! 0.16! 1.26! 0.26! 0.70! 91.03! 0.09! 6!

Splicing factor 3B 
subunit 2 ! SF3B2_HUMAN! 1.06! 0.04! 1.32! 0.26! 0.80! 91.68! 0.08! 6!

Nucleolin ! NUCL_HUMAN! 1.29! 0.29! 1.02! 0.18! 1.26! 91.83! 0.08! 12!

ATPase family 
AAA domain-

containing protein 
3A ! ATD3A_HUMAN! 1.10! 0.17! 0.78! 0.04! 1.41! 93.68! 0.06! 6!

Polypyrimidine 
tract-binding 

protein 1 ! PTBP1_HUMAN! 0.81! 0.18! 1.19! 0.14! 0.68! 93.75! 0.06! 6!

Far upstream 
element-binding 

protein 1 ! FUBP1_HUMAN! 0.90! 0.20! 1.14! 0.05! 0.79! 94.09! 0.06! 9!

Table 5.6 continued: Proteins that had iTRAQ values ≤0.80 or ≥1.25, with 

or without significant p values, in the SDS fractions of CD38+ CLL 
samples compared to CD38− CLL samples.!
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(A)!
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Figure 5.7: Proteins with different expression in CD38+ CLL samples 

(poor prognosis) relative to CD38– CLL samples (good prognosis). 
Protein relative quantification using the iTRAQ technique coupled with LC-

MS/MS was performed on the NP40 fractions and the SDS fractions of CLL 
samples. The expression of three proteins from the NP40 fractions of CLL 

samples was elevated in CD38+ compared with CD38– samples (A-C). !
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Figure 5.7 continued: Proteins with different expression in CD38+ CLL 

samples (poor prognosis) relative to CD38– CLL samples (good 
prognosis). Protein relative quantification using iTRAQ technique coupled 

with LC-MS/MS was performed on the NP40 fractions and the SDS fractions 
of CLL samples. The expression of three proteins from the SDS fractions of 

CLL samples was down-regulated in CD38+ compared with CD38– samples  

(D-F). !
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 Of the proteins that had iTRAQ values ≤0.80 or ≥1.25 coupled 

with a significant p value, Keratin, type I cytoskeletal 10  (p= 0.03, n= 11) and 

Keratin, type II cytoskeletal 5 (p= 0.03, n= 6) were observed with higher 

expression in CD38+ CLL samples. However, these two proteins were not 

included in the final annotated list of differentially expressed proteins in CD38+ 

CLL samples as they are common contaminating proteins that are often 

identified by mass spectrometry (Ding et al., 2003, Lubec and Afjehi-Sadat, 

2007). 

 

 The ninth protein that showed an iTRAQ value ≤0.80 or ≥1.25 

with a significant p value between the CD38+ CLL and CD38– CLL samples 

was Histone H2B type 1-L (p= 0.02, n= 6). This protein was observed with 

lower expression in CD38+ CLL samples. However, all the peptides that were 

used for identification of this protein contributed to identification of other 

proteins, such as Histone H2B type 1-M and Histone H2B type 1-N. The 

reason why this occurred despite the use of high peptide count for protein 

identification (11 peptides) was because these three proteins are very similar 

in terms of their sequence (Figure 5.8). As a result, Histone H2B type 1-L was 

excluded from the final list and was not studied further.  

 

 As stated previously, the quantitative proteomics analysis was 

designed to study the CLL proteome associated with poor prognosis and good 

prognosis CLL as defined by CD38 expression.  The clinical data that was 

available allowed a further subset analysis to be performed based on ZAP-70  



Figure 5.8: Alignment analysis of Histone H2B type 1-L (H2B1L_HUMAN), 

Histone H2B type 1-M (H2B1M_HUMAN) and Histone H2B type 1-N 
(H2B1N_HUMAN). This was performed using the alignment tool of the UniProt 

database (http://www.uniprot.org/). The asterisk symbols (*) represent identical 
positions, the colon symbol (:) indicates positions with strongly similar properties and 

the period symbol (.) demonstrates positions with weakly similar properties. The 

analysis demonstrated that of the full protein sequence (126 amino acids) these 
proteins had 120 identical positions.!
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expression, the presence or absence of IGHV gene mutations, and clinical 

staging. This was carried out separately on the NP40 fractions and the SDS 

fractions. 

 

5.2.8 Analysis of protein expression in CLL samples based on 

ZAP-70 expression 

 The expression of ZAP-70 has prognostic value in CLL. High 

expression of ZAP-70 in CLL cells is associated with poor prognosis, whereas 

low expression of ZAP-70 in CLL cells is associated with good prognosis 

(Rassenti et al., 2004, Pepper et al., 2012).  

 

 In this analysis protein expression of three ZAP-70+ CLL 

samples (ZAP-70 expression ≥23%) was compared with that of seven ZAP-

70− CLL samples (ZAP70 expression <6%). The analysis was carried out on 

both the NP40 fractions and SDS fractions. In total 336 proteins were used for 

this study as they were relatively quantified in five or more samples. Figure 

5.9 shows the protein expression ratio of ZAP-70+ CLL samples to ZAP-70– 

CLL samples with statistical confidence score. The majority of the proteins 

(330 proteins, 98.2%) did not exhibit a significant change in their expression in 

ZAP-70+ CLL and ZAP-70– CLL samples. However, six proteins were found to 

meet the four criteria used to report a protein with an altered expression in 

CLL samples. Four of these proteins were found in the NP40 fractions and 

two were found in the SDS fractions. These proteins are shown in Figure 5.9 

and are highlighted in blue. From the NP40 fractions, four proteins were  



(A)!

(B)!

Figure 5.9: Protein expression of ZAP-70+ CLL samples (poor 

prognosis) and ZAP-70– CLL samples (good prognosis). The analysis 
was performed on the NP40 fractions (A) and on the SDS fractions (B). 

The protein expression ratio was determined by dividing proteomic iTRAQ 
values of ZAP-70+ CLL by that of ZAP-70– CLL. Percentage confidence 

was generated using p values, where p=0.05 is equal to 95% confidence. 

The blue dots represent proteins with an !"#$%& '()*+& ,-./-& 01& 23.45& (67&
295% confidence.!
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detected with an up-regulated expression in the ZAP-70+ CLL samples. These 

proteins included acidic leucine-rich nuclear phosphoprotein 32 family 

member A (p= 0.01, n= 7, Figure 5.10A), LIM and SH3 domain protein 1 (p= 

0.001, n= 9, Figure 5.10B), U6 snRNA-associated Sm-like protein LSm3 (p= 

0.02, n= 9, Figure 5.10C) and Peroxiredoxin-5, mitochondrial (p= 0.04, n= 6, 

Figure 5.10D). From the SDS fractions, RNA-binding protein FUS was shown 

with lower expression in ZAP-70+ CLL samples (p= 0.04, n= 7, Figure 5.10E), 

while DNA-(apurinic or apyrimidinic site) lyase was found with higher 

expression in the ZAP-70+ CLL samples (p= 0.01, n= 6, Figure 5.10F). All of 

these six proteins were identified with at least one specific peptide (Appendix 

10). 

 

5.2.9 Analysis of protein expression in CLL samples based on 

the mutational status of IGHV  

 The mutational status of the IGHV gene is regarded one of the 

most accurate and widely applicable prognostic markers in CLL. In this regard, 

patients with CLL cells bearing unmutated IGHV  (U-CLL) were shown to have 

an aggressive form of CLL, while patients with CLL cells carrying mutated 

IGHV  (M-CLL) were shown to have a more indolent form of CLL (Hamblin et 

al., 1999, Damle et al., 1999).  

 

 In this analysis protein expression of four U-CLL samples was 

compared to that of four M-CLL samples. The analysis was carried out on 

both the NP40 fractions and the SDS fractions using 322 protein IDs as they  
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Figure 5.10: Proteins with an altered expression in ZAP-70+ CLL 

samples compared with ZAP-70– CLL samples. Relative quantification 
of CLL proteins using the iTRAQ technique coupled with LC-MS/MS was 

performed on NP40 fractions and SDS fractions of CLL samples. Four 
proteins from the NP40 fractions of CLL samples with high or low ZAP-70 

expression showed altered expression (A-C). !
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Figure 5.10 continued: Proteins with an altered expression in ZAP-70+ 

CLL samples compared with ZAP-70– CLL samples. Relative quantification 
of CLL proteins using the iTRAQ technique coupled with LC-MS/MS was 

performed on NP40 fractions and SDS fractions of CLL samples. The fourth 
protein that showed altered expression in the NP40 fractions of CLL samples 

with high or low ZAP-70 expression was peroxiredoxin-5, mitochondrial (D). 

From the SDS fractions of CLL samples with high or low ZAP-70 expression 
two proteins exhibited differential expression (E and F). !
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were quantified in five or more CLL samples. Figure 5.11 demonstrates the 

protein expression ratio of U-CLL samples to M-CLL samples with statistical 

confidence scores. The majority of the proteins (315 proteins, 97.8%) did not 

demonstrate a significant change in their expression in U-CLL versus M-CLL 

samples Nevertheless, seven proteins were found with iTRAQ values ≤0.80 or 

≥1.25 and significant p values in U-CLL compared with M-CLL samples. Six of 

these proteins were indentified in the NP40 fractions and one was detected in 

the SDS fractions. These proteins are labelled in blue in Figure 5.11. 

 

 Of the seven proteins, three proteins satisfied the four criteria to 

be considered altered proteins in CLL samples. From the NP40 fractions, 

tropomyosin alpha-4 chain showed a decreased expression in U-CLL samples 

compared to M-CLL samples (p= 0.05, n= 6, Figure 5.12A), while LIM and 

SH3 domain protein 1 was shown with high expression in U-CLL samples 

compared to M-CLL samples (p= 0.02, n= 8, Figure 5.12B). From the SDS 

fractions, apoptotic chromatin condensation inducer in the nucleus was 

significantly lower in U-CLL samples relative to M-CLL samples (p= 0.003, n= 

6, Figure 5.12C). All of these three proteins were identified with two or more 

specific peptides (Appendix 11). 

 

 Other proteins that had iTRAQ signal ≤ 0.80 or ≥ 1.25 and 

significant p value in U-CLL versus M-CLL samples were Keratin, type I 

cytoskeletal 9 (p= 0.004, n= 8), Keratin, type II cytoskeletal 2 epidermal (p= 

0.01, n= 8), Keratin, type II cytoskeletal 1 (p= 0.01, n= 8) and Keratin, type I  



Figure 5.11: Protein expression of U-CLL samples (poor 

prognosis) and M-CLL samples (good prognosis). The analysis was 
performed on the NP40 fractions (A) and on the SDS fractions (B). 

Protein expression ratio was determined by dividing the proteomic 
relative quantification of U-CLL by that of M-CLL. Percentage 

confidence was generated using p values, where p=0.05 = 95% 

confidence. The blue dots represent proteins with an iTRAQ value 
≤0.80 or ≥1.25 and ≥95% confidence.#
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p= 0.05!
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(A)!

Figure 5.12: Proteins with an altered expression in U-CLL samples 

compared to M-CLL samples. Relative protein quantification using the iTRAQ 
technique coupled with LC/MS/MS was performed on the NP40 fractions and the 

SDS fractions of CLL samples. The expression level of two proteins from the 
NP40 fractions of CLL samples with or without IGHV mutations was different (A 

and B). Likewise, one protein from the SDS fractions of CLL samples with or 

without IGHV mutations demonstrated differential expression (C). !
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cytoskeletal 10 (p= 0.01, n= 8). All of these proteins were found with lower 

expression in U-CLL samples. For the same reason mentioned earlier, these 

three proteins were not included in the final list of differentially expressed 

proteins in U-CLL samples and M-CLL samples.  

 

5.2.10 Analysis of protein expression in CLL samples based on 

disease stage 

 Historically there have been two different systems for CLL 

staging; the Rai system (Rai et al., 1975) and the Binet system (Binet et al., 

1981). Both systems are based on observable clinical outcomes such as high 

white cell count, lymphadenopathy, hepatomegaly, splenomegaly, anaemia 

and thrombocytopenia. The majority of CLL patients (approximately 70%) are 

diagnosed at an early stage of the disease with a fraction of these developing 

a more advanced stage with time (Pepper et al., 2012). In the Binet staging 

system, the median survival of a patient with stage A is more than 10 years, 

five years for stage B CLL patients and three years for stage C CLL patients 

(Binet et al., 1981). 

 

  In this study, the proteomes of stage B/C CLL samples were 

compared to those of stage A CLL samples (three samples versus seven CLL 

samples, respectively). The analysis was performed on the NP40 fractions 

and the SDS fractions utilising 320 proteins that were quantified in five or 

more CLL samples. Figure 5.13 shows the protein expression ratio of stage 

B/C CLL samples to stage A CLL samples with statistical confidence. The  
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Figure 5.13: Protein expression of stage B/C CLL samples and stage A 

CLL samples. The analysis was performed on the NP40 fractions (A) and on 
the SDS fractions (B). The protein expression ratio was determined by 

dividing proteomic relative quantification of stages B/C CLL samples by that 
of stage A CLL samples. Confidence percent was generated using p value, 

where p=0.05 = 95% confidence. The blue dots represent proteins with an 

iTRAQ value ≤ 0.80 or ≥ 1.25 and ≥ 95% confidence.#
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majority of quantified proteins in the two groups of patient samples showed no 

significant change in their expression (319 proteins, 99.6%). However, one 

protein met the four criteria of altered proteins in CLL samples. This protein 

was myosin 9 that showed lower expression in the SDS fractions of stage B/C 

CLL samples compared to stage A CLL samples (p= 0.03, n =10, Figure 5.14). 

This protein was identified with two or more specific peptides (Appendix 12) 

 

5.2.11 Summary of the altered proteins in poor prognosis CLL 

compared to good prognosis CLL  

 In this study the protein expression of poor prognosis CLL was 

compared to that of good prognosis CLL on the basis of four commonly used 

CLL prognostic markers (CD38, ZAP-70, mutational status of IGHV genes and 

Binetʼs CLL stages). These subset analyses indentified 15 proteins with 

differential expression in the two forms of CLL. These proteins with their 

biological functions that were extracted from their Gene Ontology data using 

Quick GO-EBI tool (http://www.ebi.ac.uk/QuickGO/) are shown in Table 5.7. 

 

5.2.12 Proteins with the most heterogeneous expression in CLL 

samples 

 The standard deviation (SD) of relative expression of proteins in 

five or more CLL samples was used to indicate whether or not a protein was 

heterogeneously expressed in CLL.  This analysis excluded proteins that were 

likely to be detected in CLL samples due to contamination. These proteins 

included different types of keratin, hemoglobin subunits, neutrophil defensin 3,  



p= 0.03!
n= 10!
Stage B/C versus Stage A = 0.57!

Figure 5.14: One protein (myosin-9) with different expression in 
CLL samples from patients in stages B and C and patients in stage 
A. Protein relative quantification using iTRAQ technique coupled with 
LC/MS/MS was performed on NP40 fractions and on the SDS fractions 
of CLL samples. Only myosin 9 was found with altered expression in 
stage B/C CLL samples versus stage A CLL samples.!
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Protein name 
Accession 
number Biological function  Comparison!

Change 
ratio!

T-cell leukemia/
lymphoma protein 1A! TCL1A_HUMAN! Stem cell maintenance 

CD38+ / 
CD38–! 1.66!

Acidic leucine-rich 
nuclear phosphoprotein 

32 family member A! AN32A_HUMAN!
Intracellular signal 

transduction 
ZAP-70+ / 
ZAP-70–! 1.3!

DNA-(apurinic or 
apyrimidinic site) lyase! APEX1_HUMAN!

Positive regulation of DNA 
repair 

ZAP-70+ / 
ZAP-70–! 1.28!

U6 snRNA-associated 
Sm-like protein LSm3! LSM3_HUMAN! Gene expression 

ZAP-70+ / 
ZAP-70–! 1.27!

LIM and SH3 domain 
protein 1! LASP1_HUMAN! SH3/SH2 adaptor activity 

ZAP-70+ / 
ZAP-70–! 1.27!

LIM and SH3 domain 
protein 1! LASP1_HUMAN! SH3/SH2 adaptor activity UM / M! 1.26!

Peroxiredoxin-5, 
mitochondrial! PRDX5_HUMAN!

Negative regulation of 
apoptotic process 

ZAP-70+ / 
ZAP-70–! 1.25!

Septin-7! SEPT7_HUMAN!
Protein 

heterooligomerization 
CD38+ / 
CD38–! 0.8!

14-3-3 protein theta! 1433T_HUMAN! Protein targeting 
CD38+ / 
CD38–! 0.79!

Histone H4! H4_HUMAN! Nucleosome assembly 
CD38+ / 
CD38–! 0.74!

RNA-binding protein 
FUS! FUS_HUMAN! Cell death 

ZAP-70+ / 
ZAP-70–! 0.74!

Tropomyosin alpha-4 
chain! TPM4_HUMAN!

Cellular component 
movement UM / M! 0.74!

Apoptotic chromatin 
condensation inducer in 

the nucleus! ACINU_HUMAN! Apoptotic process UM / M! 0.73!
Splicing factor, arginine/

serine-rich 2! SFRS2_HUMAN! RNA splicing 
CD38+ / 
CD38–! 0.68!

Myosin-9! MYH9_HUMAN! Cell-cell adhesion B-C / A! 0.57!

Histone H2B type 2-E H2B2E_HUMAN Nucleosome assembly 
CD38+ / 
CD38–! 0.48!

Table 5.7: Summary of the altered proteins in the poor prognosis CLL 

versus the good prognosis CLL !

The 15 proteins that were identified with an altered expression when the 
proteome of poor prognosis CLL was compared with the proteome of good 
prognosis CLL on the basis of  the following prognostic markers: CD38, 
ZAP-70, mutational status of IGVH and Binetʼs stags of CLL. The biological 
functions of these proteins were extracted from their Gene Ontology data 
using  Quick Go – EPI (http://www.ebi.ac.uk/QuickGO/GAnnotation). This 
table is sorted according to the change in protein expression (change ratio).!
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neutrophil elastase and macrophage migration inhibitory factor. The SD of 

protein expression in CLL samples (≥5 samples) showed that 14 proteins 

exhibited the most variable expression in CLL samples (z-score > 2). Ten 

proteins were from the NP40 fractions representing 3.2% of the proteins that 

were quantified in five or more CLL samples (316 proteins). In addition, four 

proteins were from the SDS fractions representing 3.1% of the proteins that 

were quantified in at least five CLL samples (130 proteins). Table 5.8 shows 

these proteins with their biological functions that were extracted from their 

Gene Ontology data using Quick GO-EBI tool (http://www.ebi.ac.uk/QuickGO/). 

 

5.2.13 Gene expression of proteins altered in CLL samples 

 To investigate the gene expression of the altered proteins in CLL 

samples, data from a published gene expression study that was conducted on 

CD38+/ZAP-70+ CLL samples versus CD38−/ZAP-70− CLL samples were 

utilised (Huttmann et al., 2006). This analysis was limited to altered proteins 

that were found when the analysis was based on either CD38 expression or 

ZAP-70 expression (twelve proteins). The reason for this was because the 

gene expression study was based on CLL samples with negative or positive 

expression of CD38 and ZAP-70 (Huttmann et al., 2006). The accession 

numbers of these twelve proteins were converted to Affymetrix accession 

numbers (Affy_HG_U1331) using the g: Convert tool 

(http://biit.cs.ut.ee/gprofiler/gconvert.cgi).  



Relative expression of proteins in CLL samples was determined using iTRAQ 
reagents followed by LC-MALDI mass spectrometry analysis. Data analysis was 
performed using PorteinPilot software coupled with the Paragon and ProGroup 
algorithms. This table shows proteins with the most heterogeneous expression 
that were quantified in at least five CLL samples. Average is the average of 
iTRAQ signals in five or more CLL samples, SD: standard deviation of iTRAQ 
signals. This table was sorted on the basis of SD followed by the sample count.!

Table 5.8: Proteins found with the most heterogeneous expression in CLL 

samples. !

Protein name!
Accession 

Number! Biological function! Average! SD!
Sample 
count! Fraction!

Z 
score!

Protein S100-A9! S10A9_HUMAN!

Positive regulation 
of NF-kappaB 

transcription factor 
activity! 1.69! 1.11! 11! NP40! 8.10!

Protein S100-A8! S10A8_HUMAN!

Positive regulation 
of NF-kappaB 

transcription factor 
activity! 1.72! 0.92! 11! NP40! 6.52!

Putative 
heterogeneous 

nuclear 
ribonucleoprotein A1-

like 3! RA1L3_HUMAN! Unknown! 1.4! 0.83! 11! NP40! 5.76!
Triosephosphate 

isomerase! TPIS_HUMAN!
Triose-phosphate 
isomerase activity! 0.71! 0.66! 6! SDS! 3.44!

T-cell leukemia/
lymphoma protein 1A! TCL1A_HUMAN!

Multicellular 
organismal 

development! 1.63! 0.65! 11! NP40! 4.26!
Heterogeneous 

nuclear 
ribonucleoproteins 

A2/B1! ROA2_HUMAN! Gene expression! 1.36! 0.61! 11! NP40! 3.90!

Lactotransferrin! TRFL_HUMAN!
Cellular iron ion 

homeostasis! 0.72! 0.56! 6! SDS! 2.54!

Galectin-1! LEG1_HUMAN!

Positive regulation 
of I-kappaB kinase/

NF-kappaB 
cascade! 1.35! 0.54! 11! NP40! 3.32!

Heterogeneous 
nuclear 

ribonucleoprotein A3 ! ROA3_HUMAN! Gene expression! 1.39! 0.54! 9! SDS! 2.45!

Histone H2A.J! H2AJ_HUMAN!
Nucleosome 

assembly! 1.21! 0.53! 11! NP40! 3.22!

Histone H4! H4_HUMAN!
Nucleosome 

assembly! 1.27! 0.51! 11! NP40! 3.09!
Lysozyme C ! LYSC_HUMAN! Lysozyme activity! 0.97! 0.50! 9! SDS! 2.10!

Vimentin! VIME_HUMAN!
Cellular component 

movement! 0.99! 0.41! 11! NP40! 2.26!

Peroxiredoxin-2! PRDX2_HUMAN!
Negative regulation 
of apoptotic process! 1.07! 0.40! 11! NP40! 2.21!
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The Affymetrix accession numbers were then used to extract the 

cognate gene expression ratio of the altered proteins. Of the twelve proteins, 

two did not have a match with the Affymetrix IDs and could not be used in the 

analysis. The analysis demonstrated that some mRNA and the proteins they 

encod had a similar expression pattern, while some others showed an 

opposite expression patterns (Figure 5.15). For example, TCL-1 and LSAP-1 

were up-regulated at both the transcripts and protein levels in the poor 

prognosis CLL. However, H4 and H2B2E had high transcripts yet low protein 

expression in the poor prognosis CLL. In addition, LSM3 showed low 

transcript but high protein expression in the poor prognosis CLL.  

 

5.3 Discussion 

 Quantitative proteomics approaches have been previously used 

to study the protein expression of poor prognosis and good prognosis CLL. 

Three proteomics studies were conducted using gel-based quantitative 

approaches such as 2DE with silver staining or DIGE (Voss et al., 2001, 

Cochran et al., 2003, Perrot et al., 2011). In contrast, only one CLL 

proteomics study has been performed using gel-free quantitative approaches 

like cICAT (Barnidge et al., 2005a). Similarly, in the current project a gel-free 

quantitative approach using iTRAQ was utilised. In gel-based quantitative 

proteomics protein quantification occurs prior to protein identification. 

Therefore, it is usually only proteins with altered expression that are subjected 

to identification. This renders the number of quantified and identified proteins 

low e.g. 17 (Voss et al., 2001) or 31 proteins (Perrot et al., 2011) and leaves  



Figure 5.15: Gene expression of the altered proteins in CLL samples. 

Published CLL gene expression data (Huttmann et al., 2006) (CD38+/ZAP-70+ 
CLL samples versus CD38–/ZAP-70− CLL samples) were used to study the 

gene expression ratio of the altered protein in CLL samples (CD38+ CLL 
samples versus CD38− CLL samples and ZAP-70+ CLL samples versus 

ZAP-70− CLL samples). The red dotted line represents a gene:protein 

expression ratio 1, where the poor prognosis and good prognosis CLL 
samples had an equal expression of a gene or a protein. "
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proteins with similar expression unidentified. However, in gel-free quantitative 

proteomics protein identification happens prior to protein quantification. This 

makes the number of identified and quantified proteins high; for example, 538 

proteins (Barnidge et al., 2005a) and 655 proteins in the current project. From 

these proteins the main attention was paid to those with altered expression in 

CLL. However, proteins with similar expression can also be used to indicate 

biological functions that do not change in CLL. 

 

 Of the mass labels that have been introduced to facilitate 

quantitative proteomics, only one was previously used in CLL proteomics 

studies. Barnidge et al., (2005a) exploited the cICAT technique to study 

protein expression in one U-CLL sample versus one M-CLL sample. This 

mass labelling technique allowed simultaneous labelling of only two samples 

utilising only cysteine-containing peptides (Yi et al., 2005). In contrast, the 

mass labels used in the project described in this chapter were iTRAQ, which 

allowed simultaneous labelling of four samples (Ross et al., 2004).  

 

 The variability in the clinical outcome of CLL (Pepper et al., 

2012) implies that the reference samples, which were used for the relative 

quantification of CLL proteome, should have been prepared from CLL 

samples of patients with different CLL prognosis. In principle, this would give 

an assurance that for every quantified peptide in the test samples there would 

be an analogous peptide in the reference sample to compare with in order to 

generate the relative quantification. This was the case with the relative 
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quantification of the proteins in the SDS fractions. However, the NP40 

reference sample, which was used for the relative quantification of proteins in 

the NP40 fractions, was prepared from one CLL sample. While this had the 

possibility to create a situation where the relative quantification of peptides in 

the test samples are missed due to the absence of the analogous peptides in 

the reference sample, non of quantified proteins in the test samples (NP40 

fractions) were absent in the NP40 reference sample. 

 

 Of the proteins that were found with iTRAQ signal ≤0.80 or ≥1.25 

and significant p value in the poor prognosis CLL and the good prognosis CLL 

were different types of keratin. However, keratin has been shown in different 

reports to be one of the most contaminating proteins that are commonly 

identified by mass spectrometry (Ding et al., 2003, Lubec and Afjehi-Sadat, 

2007). In fact, when a sample containing 20 highly purified recombinant 

human proteins was analysed by 27 different proteomics labs, all of these 

labs identified different types of keratin to be identified in the (Bell et al., 2009). 

This happened despite the fact that keratin was not included with the 20 

recombinant proteins in the original sample.  

 

 Of the previous proteomics studies that have investigated 

protein expression in poor prognosis CLL and good prognosis CLL, the 

majority (3/4) used mutational status of IGHV to discriminate between the two 

forms of CLL (Cochran et al., 2003, Barnidge et al., 2005, Perrot et al., 2011). 

In fact, only one study was partially conducted on CD38+ CLL and CD38− CLL 
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and showed no significant changes in the two groups of samples (Cochran et 

al., 2003). This project was initially designed to study protein expression in six 

CD38+ CLL samples and six CD38− CLL samples. This led to the identification 

of six proteins with different expression in the two groups of samples such as 

TCL-1, which is linked to the tumourigenesis of CLL and poor prognosis of 

CLL (Bichi et al., 2002, Herling et al., 2006) 

 

 While the main goal of this chapter was to study protein 

expression in the two forms of CLL, patients with CD38+ CLL do not always 

have an aggressive disease and patients with CD38− CLL do not always have 

an indolent disease (Durig et al., 2002, Pepper et al., 2012). As a result, 

subset analysis based on other common prognostic markers such as ZAP-70 

expression, mutational status of IGHV and CLL stage were performed in an 

attempt to identity more proteins with altered expression in the two forms of 

CLL. These analyses increased the number of identified proteins with altered 

expression from six (CD38 expression based analysis) to 15 proteins. 

Interestingly, one of these proteins (LIM and SH3 domain protein 1) was 

observed with higher expression in ZAP-70+ CLL samples as well as in U-CLL 

samples. This finding might be explained by the observation that there is a 

good, but not perfect, correlation between ZAP-70 positivity and unmutated 

IGHV genes (Crespo et al., 2003, Rassenti et al., 2004). In fact, in this study, 

3 out of 4 of the U-CLL samples were ZAP-70+ and all the four M-CLL were 

ZAP-70−. 
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 Of proteins that were demonstrated by previous CLL proteomics 

studies to be differentially expressed in the two forms of CLL, some were not 

identified in this project. For example, cytochrome c oxidase subunit 6B1 

(CX6B1_HUMAN) was found with reduced expression in U-CLL compared to 

M-CLL (Barnidge et al., 2005a). The reasons for this might be due to the 

different proteomics approach used by Barnidge et al. (2005a) including 

different sample labelling (cICAT), peptide soft ionisation (electrospray 

ionisation) and the mass spectrometry instrumentation used (linear ion-trap 

mass spectrometer). Alternatively, the absence of this protein ID may simply 

reflect the biological differences observed between CLL patients. 

 

 This project yielded some contradictory results to those 

observed in previous proteomics studies. For instance, nucleophosmin was 

reported to be undetectable in U-CLL but present in M-CLL (Cochran et al., 

2003). This protein was identified and quantified in all CLL samples in the 

current study, with at least 5 specific peptides (confidence score ≥ 98%). In 

addition, this protein did not show significantly altered expression in U-CLL 

samples versus M-CLL samples or in any other prognostic marker-based 

analyses. In the Cochran et al. (2003) study, nucleophosmin was identified 

with five peptides using peptide mass fingerprint (PMF) analysis. In contrast, 

in my study nucleophosmin was identified and quantified with at least 5 

specific peptides based on tandem mass spectrometry analysis (peptide 

sequencing), which is reportedly more sensitive than the PMF method (Steen 

and Mann, 2004). 
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  Consistent with previous CLL proteomics studies, I identified 

proteins that were previously shown to have different expression in the two 

forms of CLL. For example, my project and a previous CLL proteomics study 

reported an increased expression of acidic leucine-rich nuclear 

phosphoprotein 32 family member A in poor prognosis CLL (Barnidge et al., 

2005a). Similarly, the current project and two other CLL proteomics studies 

showed that LIM and SH3 domain protein 1 was up-regulated in poor 

prognosis CLL (Voss et al., 2001, Barnidge et al., 2005). In addition, my 

project and a previous CLL proteomics study demonstrated that myosin-9 was 

found with low expression in poor prognosis CLL (Barnidge et al., 2005a). 

 

 While performing subset analysis based on different prognostic 

markers had the potential to identify more proteins with altered expression in 

the two forms of CLL, it is difficult to claim that it identified all relevant CLL 

proteins. As CLL is characterised by a heterogeneous clinical outcome, CLL 

relevant proteins might be those found amongst the proteins with the most 

heterogeneous expression. Some of the proteins identified with the most 

variable expression in the CLL samples examined, were linked to cancer and 

in some cases specifically to leukaemia. For example, Vimentin was 

previously linked to CLL prognosis, where vimentin expression inversely 

correlated with the percentage of smudge cells, a good prognostic marker 

(Nowakowski et al., 2007). The expression of this proteins was shown to 

increase in U-CLL following BCR stimulation (Perrot et al., 2011). In addition, 
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S100A8 and S100A9 were shown to be involved in the progression of breast 

cancer and prostate cancer (Cormier et al., 2009, Hermani et al., 2005) and 

were linked to NF-"B pathway (Benedyk et al., 2007), an important pathway in 

CLL (Hewamana et al., 2008). Furthermore, S100A8 was reported as a poor 

prognostic marker in acute myeloid leukaemia (AML) (Nicolas et al., 2011). 

More importantly, TCL-1 was linked to the tumourigenesis of CLL (Bichi et al., 

2002) and was observed to associate with poor prognosis CLL (Herling et al., 

2006). Consistently, in my project, TCL-1 was shown with an increased 

expression in CD38+ CLL. This probably indicates that investigating 

heterogeneously expressed proteins in CLL is a good strategy to identify 

proteins with potential importance in this disease, whose expression might be 

independent of the prognostic markers that were used in this study. 

 

 Different studies utilised transcriptomic and proteomics 

approaches to explore whether a correlation can be found between data 

generated by both approaches. In this regard, (Nishizuka et al., 2003) 

demonstrated that protein expression and gene expression correlates well 

among structural proteins and poorly for non-structural proteins. Another study 

showed poor correlation between 1900 proteins and their cognate transcripts, 

but good correlation among tissue specific proteins and genes (Conrads et al., 

2005). In the context of CLL, a CLL proteomics study showed that 3/25 

proteins that exhibited different expression in U-CLL before and after BCR 

stimulation were altered at mRNA and protein levels in the same direction, 

whereas 8 were altered at mRNA and protein levels in opposite directions 
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(Perrot et al., 2011). In the present project, some of the highly expressed 

proteins in poor prognosis CLL samples were also up-regulated at the level of 

gene expression, albeit in a different set of samples. This may indicate that 

proteins such as TCL-1 and LIM and SH3 domain protein 1 are predominantly 

regulated at the level of gene transcription. In contrast, some proteins were 

reduced in poor prognosis CLL, yet their gene expression was over-expressed 

in poor prognosis CLL. This may suggest that proteins such as Histone H4 

and Histone H2B type 2-E are regulated, at least to some extent, by post-

translational modifications. 

 

 This chapter identified 15 proteins with altered expression in poor 

prognosis CLL compared with good prognosis CLL. Additionally, it highlighted 

14 proteins with the most variable expression in CLL samples with either poor 

or good prognosis. The next step was to choose some of these proteins for 

validation and further investigation in additional CLL samples (see chapter six).  
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Chapter Six 

Validation and Investigation of Proteins 

with Potential Relevance to CLL 
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6.1 Introduction 

 The CLL qualitative proteomics analysis (chapter four) and the 

CLL quantitative proteomics analysis (chapter five) identified 49 proteins with 

potential relevance to CLL. These proteins fell into three groups; firstly 

proteins (n= 20) whose gene expression was found to be specific to CLL cells 

but not B-cells from healthy donors. Secondly, proteins (n= 15) that were 

differentially expressed in poor prognosis CLL compared to good prognosis 

CLL. Finally, proteins (n= 14) that showed highly variable expression 

regardless of other CLL prognostic markers. 

  

 The aim of this chapter was to select six of the 49 proteins for 

validation and further investigation. A method independent from proteomics 

was used to measure the expression of the selected proteins in additional CLL 

samples. The expression of the selected proteins was always normalised to 

Actin expression as a loading control. This was performed using densitometric 

analysis and ImageJ software 1.44o. Expression of the selected proteins was 

subsequently analysed in the context of four prognostic markers (CD38 

expression, ZAP-70 expression, mutational status of IGHV genes and Binetʼs 

staging) as well as time to first treatment (TTFT). Overall survival was not 

assessed as none of the patient samples used in this study were derived from 

patients who had died from to their disease at the time of analysis. 
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6.2. Results 

6.2.1  Evaluation of protein expression by western blotting 

  Before using western blotting to study the expression of the 

proteins that showed possible importance in CLL (chapter four and five) in 

additional cohort of CLL samples, elevating doses of cell lysates were used to 

explore the sensitivity of protein quantification by western blotting. Increasing 

doses from whole cell lysate of CLL sample (3μg, 6μg and 12μg) were 

separated by SDS-PAGE followed by western blotting analysis using a 

specific antibody to actin. Detected bands were then subjected to 

densitometric analysis using ImageJ 1.44o software in order to measure their 

intensity. Figure 6.1 shows a very strong correlation between sample dose 

and band intensity. This analysis suggested that western blotting could be 

used to measure protein expression in patient samples. 

  

6.2.2 Proteins whose transcripts are specific to CLL cells but not 

normal B-cells 

 Integrating my CLL proteome with published transcriptomes of 

CLL and normal B-cells (Huttmann et al., 2006, Hutcheson et al., 2008) 

highlighted proteins with possible relevance to CLL, as their gene expression 

was restricted to CLL cells compared to normal B-cells (described in chapter 

four). Two of these proteins were subsequently investigated using samples of 

normal B-cells and CLL cells. Three criteria were used for protein selection; a 

protein must have been detected in the majority of CLL samples (≥10 

samples) that were analysed by proteomics, it must have been identified in  
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Figure 6.1: Western blotting analysis of actin in increasing doses 

of cell lysate from CLL sample. Elevating doses from whole cell lysate 
of CLL sample (3μg, 6μg and 12μg) were resolved by SDS-PAGE 

followed by transfer onto PVDF membrane and antibody detection using 
a specific antibody to actin (A). The intensity of the detected bands was 

measured using ImageJ 1.44o software. The analysis &'()*+! ,! -*./!
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CLL samples with multiple peptide IDs (>4), and it must have been called 

ʻabsentʼ in all 11 normal B-cell samples tested by Hutcheson et al., (2008). 

Thyroid hormone receptor-associated protein 3 (TR150_HUMAN) and 

Heterochromatin protein 1-binding protein 3 (HP1B3_HUMAN) were found to 

satisfy these criteria; they were identified by proteomics in ≥11 out of 12 CLL 

samples with at least six different peptides (Ion Score for each peptide ≥95% 

C.I.) (Figures 6.2 and 6.3).  

 

6.2.2.1 Isolation of B-cells from peripheral blood of healthy donors 

 To isolate B-cells from buffy coat samples of healthy donors, 

which were received 24 hours following isolation, the low-density layer of 

mononuclear cells containing B-cells were firstly separated using Ficoll. An 

aliquot of the separated cells were then stained with an anti-CD19 labelled 

with allophycocyanin (APC) and subjected to analysis by flow cytomerty in 

order to assess the percentage of CD19-expressing cells (B-cells). The 

analysis showed that further purification of B-cells was still required to 

increase the percentage of CD19+ cells in the samples (Figure 6.4A). This 

was achieved by positive isolation of B-cells using magnetic beads labelled 

with a CD19 antibody. Following cell isolation, the bead-bound cells were 

released from the beads using DETACHaBEAD CD19 reagent. Positively 

isolated and detached cells were stained with an anti-CD19 antibody-APC 

followed by flow cytometric analysis to measure the percentage of CD19-

expressing cells. The analysis demonstrated that the populations other than  
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Figure 6.2: Identification of thyroid hormone receptor-associated protein 3 

(TR150_HUMAN or TRAP150) by proteomics. TR150 was identified with six 
good quality peptides (ion score confidence interval ≥ 95%). These peptides are 

shown in (Red Bold) in the full sequence of TR150 (A). The MS/MS spectra of 
one peptide (SIFQHIQSAQSQR), which is marked with a rectangle, is shown to 

illustrate the assignment of sequence from the MS/MS data (B). The sequence 

identified in the MS/MS spectra is read from the C terminus as only y ions were 
shown in the MS/MS spectra.   !
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Figure 6.3: Identification of heterochromatin protein 1-binding protein 3 

(HP1BP3_HUMAN) by proteomics. HP1BP3 was identified with eight good 
quality peptides (ion score confidence interval ≥ 95%). These peptides are 

shown in (Red Bold) in the full sequence of HP1BP3 (A). The MS/MS spectra 
of one peptide (TIPSWATLSASQLAR) which is marked with a rectangle, is 

shown to illustrate the assignment of sequence from the MS/MS data (B). The 

sequence identified in the MS/MS spectra is read from the C terminus as only 
y ions were shown in the MS/MS spectra.   !
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Figure 6.4: Isolation of B cells from buffy coat samples of healthy 

donor. Blood mononuclear cells were separated from buffy coat samples 
and stained with an anti CD19 antibody followed by flow cytometric analysis 

(A). More purification of B-cells was needed. This was achieved by 
performing positive isolation of B cells using CD19 Dynabeads followed by 

detaching the isolated cells from the Dynabeads. Flow cytometric analysis 

following staining with an anti CD19 antibody of the positively isolated and 
detached cells showed that 85% of the cells were CD19+ (B cells) (B).  !
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lymphocytes were diminished (Figure 6.4B), and that the percentage of CD19+ 

cells increased dramatically (average = 85%, SD = 3% B-cells). 

 

6.2.2.2 Expression of TR150 and HP1BP3 in normal B-cells 

samples 

 The analysis showed that TR150 and HP1BP3 were absent in 

the B-cells transcriptome (Hutcheson et al., 2008), but present in the CLL 

transcriptome (Huttmann et al., 2006) as well as the proteome of CLL samples 

generated in this project. To investigate whether TR150 and HP1BP3 proteins 

are expressed by normal B-cells, whole cell lysates from four normal B-cell 

samples, as well as two CLL samples, were resolved by SDS-PAGE. 

Separated proteins were transferred onto a PVDF membrane for antibody 

detection using specific antibodies against TR150 and HP1BP3. The analysis 

demonstrated that these two proteins were detected in the two CLL samples 

and in two out of four normal B-cells samples (Figure 6.5A). To investigate 

whether the amount of TR150 and HP1BP3 that was detected in 2/4 of the 

normal B-cells samples was derived from ʻcontaminatingʼ non-B-cells, these 

two proteins were measured in normal B-cells and in matched (unseparated) 

peripheral blood mononuclear cells using western blotting. The analysis 

demonstrated that the amount of TR150 and HP2BP3 that was detected in the 

B-cell samples was greater than that found in the matched peripheral blood 

mononuclear cells (Figure 6.5B). This suggested that the amount of TR150 

and BP1BP3 detected in these normal B-cell samples was not due to 

contamination from other peripheral blood mononuclear cells. 
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Figure 6.5: Expression of TR150 and HP1BP3 in CLL cells, normal B-

cells and peripheral blood mononuclear cells. Proteins from whole cell 
lysates of CLL and normal B-cell samples were resolved in SDS-PAGE 

followed by transfer onto PVDF membrane and antibody detection using a 
specific antibody to TR150 and HP1BP3. This figure shows that HP1BP3 

and TR150 are present in all CLL samples and in 50% of normal B-cell 

samples (A). In addition, the amount of TR150 and HP1BP3 in the normal 
B-cells (BC) is larger than that in peripheral blood mononuclear cells (BMC) 

(B).!
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 TR150 and HP1BP3 were detected by proteomics in ≥11/12 CLL 

samples. However, these two proteins were also detected by western blotting 

in 2/4 of normal B-cell samples. These two normal B-cells samples showed 

higher expression of both TR150 and HP1BP3 compared to the two CLL 

samples. This indicated that these proteins were not specific to the 

pathological transformation to CLL but did not rule out a prognostic role for 

one or both of these proteins during the course of the disease. In addition, the 

strategy described in Chapter four of integrating the identified proteome of 

CLL cells with published transcriptome of CLL cells and normal B-cells 

identified proteins with potential link to CLL such as TAPP-2 (Costantini et al., 

2009), although it was detected in both normal and malignant B-cells. 

Consequently, analyses were performed to determine if these two proteins 

have a potential impact on the prognosis of CLL. 

 

6.2.2.3 Expression of TR150 in CLL samples!

 To explore whether the expression of TR150 (also known as 

TRAP150) had a potential influence on the clinical outcome of CLL, this 

protein was measured in 16 CLL samples exhibiting different prognostic 

markers. A specific antibody was used to assess TR150 expression in CLL 

samples following SDS-PAGE and western blotting. Figure 6.6A 

demonstrated that the expression of TR150 in CLL samples is relatively 

variable. In addition, TR150 expression showed no significant change in poor 

prognosis CLL compared to good prognosis CLL on the basis of CD38 (p= 

0.23, n= 16, Figure 6.6B), ZAP-70 (p= 0.35, n= 16, Figure 6.6C) and IGHV 
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mutational status (p= 0.47, n= 12, Figure 6.6D). In contrast, CLL samples from 

patients in advanced stage had a significantly higher expression of TR150 

compared to those from patients in the early stage of CLL (p= 0.05, n= 16, 

Figure 6.6E). This data suggest that TR150 may play a role in CLL 

progression, yet this remains to be confirmed in a largercohort of CLL 

patients.  

 

 Given the possible association of TR150 high expression with 

more advanced stage disease, I next investigated whether the expression of 

TR150 was predictive of the requirement for treatment in CLL patients. The 

median TR150 expression (TR150/Actin ratio = 0.55) was used to divide CLL 

patients into two groups; a high TR150 group with median follow-up 5.12 

years and a low TR150 group with median follow-up of 7.32 years. The TTFT 

of the patients in each group was analysed using the Log-rank test and 

graphically represented using Kaplan-Meier curves. The analysis showed that 

the median TTFT in the high TR150 group was 0.78 years, while the median 

of TTFT in the low TR150 group was not reached (p= 0.02, n= 16, Figure 6.7). 

Although high expression of TR150 was significantly associated with an early 

need for treatment, not all patients with high TR150 required treatment. This 

preliminary analysis suggests the potential importance of TR150 in disease 

progression in at least some CLL patients. The biological reasons for this are 

yet to be elucidated. 
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Figure 6.6: Expression of TR150 in CLL samples with different prognostic 

markers. Whole cell lysate from 16 CLL samples was separated by SDS-PAGE 
followed by transfer onto PVDF membrane and antibody detection using a 

specific antibody to TR150 (A). CLL samples with poor prognostic markers 
appear to express a higher amount of TR150 compared to those with good 

prognostic markers, yet the difference in the TR150 expression was statistically 

significant only in late versus early stages of CLL.!
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Figure 6.7: Kaplan-Meier curve comparing time period from 

diagnosis to the first treatment in CLL patients with high or low 
expression of TR150. Patients were divided into two groups using the 

median of TR150 expression; high TR150 group (TR150/Actin ratio > 
0.55) and low TR150 group (TR150/Actin ratio < 0.55). TTFT was 0.78 

years in the high TR150 group and undefined in the low TR150 group. !

p= 0.02!
n= 16!
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6.2.2.4 Expression of HP1BP3 in CLL samples!

 Measuring the abundance of HP1BP3 by western and antibody 

detection in 16 CLL samples from low and high risk CLL patients made it 

possible to investigate whether HP1BP3 had impact on CLL outcome. The 

analysis revealed that the expression of HP1BP3 in CLL samples was 

variable (Figure 6.8A). However, no significant association of HP1BP3 

expression with other poor prognostic markers was observed. This included 

CD38 (p= 0.14, n= 16, Figure 6.8B), ZAP-70 (p= 0.69, n= 16, Figure 6.8C), 

IGHV mutational status (p= 0.57, n= 12, Figure 6.8D) and Binet stage (p= 

0.43, n= 16, Figure 6.8E). 

 

 Despite the lack of association with known prognostic markers, I 

next investigated whether a particular pattern of HP1BP3 expression was 

associated with early need for treatment in CLL patients. The TTFT of patients 

with high or low HP1BP3, as defined by the median expression of HP1BP3 

(HP1BP3/Actin ratio = 0.94), was analysed using the Log-rank test and 

graphically represented using Kaplan-Meier curve. The median follow-up was 

7.54 years in the high HP1BP3 group and was 3.68 years in the low HP1BP3 

group. The analysis revealed no association between increased HP1BP3 

expression and an early need for treatment in CLL patients. The median TTFT 

was 9.1 years in the high HP1BP3 group versus 3.5 years in the low HP1BP3 

group (p= 0.79, n= 16, Figure 6.9). Although the median TTFT in the HP1BP3 

group (n= 8) was 9.1 years, 4/8 patients required early treatment (TTFT≤1.08 

years). This highlights the dangers of over interpreting small datasets in terms 
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Figure 6.8: Expression of HP1BP3 in CLL samples with different prognostic 

markers. Whole cell lysate from 16 CLL samples was separated by SDS-PAGE 
followed by transfer onto PVDF membrane and antibody detection using a specific 

antibody to HP1BP3 (A). HP1BP3 expression is reduced in CLL samples with 
some poor prognostic markers (B and D) and up-regulated in CLL samples with 

some other prognostic markers (C and E). However, the differences in the 

expression of HP1BP3 were not statically significant. !
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Figure 6.9: Kaplan-Meier curve comparing time period from diagnosis 

to the first treatment in CLL patients with high or low expression of 
HP1BP3. Patients were divided into two groups using the median of 

HP1BP3 expression; high HP1BP3 group (HP1BP3/Actin ratio > 0.94) and 
low HP1BP3 group (HP1BP3/Actin ratio < 0.94). Median TTFT was 9.1 

years in the high HP1BP3 group and 3.5 in the low HP1BP3 group with 

insignificant p value. !

p= 0.79!
n= 16!
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of clinical prognosis. This was reinforced by a closer evaluation of the four 

untreated patients with high HP1BP3 expression; two had poor prognostic 

markers (CD38+ and ZAP-70+) and the other two had good prognostic 

markers (CD38−, ZAP-70−, M-CLL, Binet stage A). This indicates that in some 

cases even high expression of HP1BP3 combined with some other known 

poor prognostic markers such CD38+ and ZAP-70+ does not predispose 

patients to early treatment.  

 

6.2.3 Proteins with altered expression in CLL samples 

 The quantitative proteomics analysis on CLL samples identified 

15 proteins with an altered expression in poor prognosis CLL compared to 

good prognosis CLL (described in chapter five). Three of these proteins were 

selected for further analysis in additional CLL samples to validate their altered 

expression. Two criteria were used for protein selection; a protein must have 

been identified with the most altered expression and must have been 

quantified in the majority of CLL samples (≥10 samples) used for quantitative 

proteomics analysis. TCL-1 and myosin-9 were found to meet these criteria; 

they were the most altered proteins that were quantified in ≥10/12 CLL 

samples. Histone H4 was also validated in more CLL samples although it did 

not show the most altered expression in CLL samples. This was done 

because this project was initially designed to study the proteome associated 

with poor prognosis CLL based on CD38 expression. Histone H4 was among 

the proteins that showed altered expression in CD38+ CLL compared to 

CD38− CLL. 
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6.2.3.1 Validation of TCL-1 in CLL samples 

 As demonstrated in the previous chapter, TCL-1 was over-

expressed in the NP40 fractions of CD38+ CLL samples compared to CD38– 

CLL samples (p=0.04, n= 11, Figure 6.10A). The NP40 fractions of 24 CLL 

samples (12 CD38+ CLL samples versus 12 CD38– CLL samples) were used 

to analyse the expression of TCL-1. A specific antibody was used to 

determine TCL-1 expression in CLL samples following SDS-PAGE and 

western blotting (Figure 6.10B). The data confirmed that TCL-1 was over-

expressed in CD38+ CLL samples compared to CD38– CLL samples (p= 0.03, 

n= 24, Figure 6.10C).  

 

 Based on the high expression of TCL-1 in CD38+ CLL samples, 

the association of TCL-1 with other poor prognostic markers was evaluated in 

the same CLL samples (n= 24). Example of the expression of TCL-1 in some 

of these samples is shown in Figure 6.11A.  The normalised TCL-1/Actin data 

showed that TCL-1 was increased in CLL samples with other poor prognostic 

markers. This included ZAP-70+ CLL (p= 0.03, n= 20, Figure 6.11B), U-CLL 

(p=0.05, n=17, Figure 6.11C) and Binet stage B/C CLL (p= 0.02, n= 22, Figure 

6.11D). 

 

 Given the association of TCL-1 with poor prognosis CLL, the 

next question to address was whether TCL-1 expression could predict for 

early treatment in CLL patients. Based on the median of TCL-1 expression 

(TCL-1/Actin ratio = 0.56) patients were considered to have either high or low  



TCL-1/Actin! 1.30   1.42    0.32    0.36!

Actin!

TCL-1!

1.10   1.51     0.28     0.48                                !

CD38+ CLL! CD38– CLL!CD38+ CLL! CD38– CLL!
(B)!

p=0.03!
n= 24!
CD38 +/− = 2.26!

(C)!

Figure 6.10: Validation of the altered expression of T-cell leukemia/

lymphoma protein 1A (TCL1) in CLL samples with high or low CD38 
expression. iTRAQ quantification showed that TCL-1 was over-expressed 

in the NP40 fractions of CD38+ CLL (A). Proteins from the NP40 fractions of 
CLL samples were resolved by SDS-PAGE followed by proteins transfer 

onto PVDF membrane and antibody detection using a specific antibody to 

TCL-1 (B). The analysis demonstrated that TCL-1 was highly expressed in 
CD38+ CLL samples (C).!
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expression of TCL-1. The median follow-up in the high TCL-1 group was 6.88 

years and 4.23 years in the low TCL-1 group. The TTFT of patients in each 

group was analysed using the Log-rank test and graphically represented using 

Kaplan-Meier curves. As shown in Figure 6.12 the median TTFT in the high 

TCL-1 group was 5.4 years and was not reached in the low TCL-1 group (p= 

0.01, n= 22). Nevertheless, some patients with high TCL-1 did not require 

treatment even 13.2 years after diagnosis suggesting that patients with 

elevated TCL-1 expression do not uniformly require early treatment. Despite 

the limited number of samples used this study and the larger follow-up in the 

high TCL-1 group compared to the low TCL-1 group, this analysis provided 

preliminary evidence of the potential prediction of TTFT on the basis of TCL-1 

expression. 

 

6.2.3.2 Validation of Histone H4 in CLL samples 

 One of the proteins that exhibited altered expression in the SDS 

fractions of CD38+ CLL samples compared with CD38− CLL samples was 

Histone H4 (p= 0.05, n= 12, Figure 6.13A). To further study the expression of 

Histone H4 in additional CLL samples, proteins in the SDS fraction of 17 CLL 

samples (8 CD38+ CLL samples versus 9 CD38− CLL samples) were resolved 

by SDS-PAGE. Proteins were transferred onto PVDF membranes followed by 

antibody detection using a specific antibody against Histone H4 (Figure 

6.13B). The analyses showed no significant change in the expression of 

Histone H4 in CD38+ CLL samples compared to CD38− CLL samples (p= 0.8, 
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n= 17, Figure 6.13C), which is not consistent with thr quantitative proteomics 

data (chapter five). 

 

 Following the validation analyses of Histone H4 in 17 CLL 

samples, normalized Histone H4/Actin data were utilised to explore the 

expression of Histone H4 in the context of other poor prognostic markers in 

CLL samples. Example of histone H4 expression in some of these samples is 

shown in Figure 6.14A. The analyses indicated no significant change in the 

expression of Histone H4 in CLL samples with other prognostic markers. This 

included ZAP-70 (p= 0.11, n= 16, Figure 6.14B), mutational status of IGHV 

genes (p= 0.98, n= 10, Figure 6.14C) and Binet stage (p= 0.90, n= 16, Figure 

6.14D).  

 

 Although there was no association found between Histone H4 

expression and the poor prognostic markers, I explored whether patients with 

an early TTFT exhibited altered expression of Histone H4. The median of 

Histone H4 expression (Histone H4/Actin = 0.74) was used to segregate CLL 

patients with high or low expression of Histone H4 in CLL cells. Patients with 

high Histone H4 had a median follow-up 7.13 years and patients with low 

Histone H4 had a median follow-up of 4.20 years. The TTFT of patients in 

each group were compared using Kaplan-Meier analysis. This revealed that 



Figure 6.12: Kaplan-Meier curve comparing time period from 

diagnosis to the first treatment in CLL patients with high or low 
expression of TCL-1. Patients were divided into two groups using the 

median of TCL-1 expression; high TCL-1 group (TCL-1/Actin ratio > 
0.56) and low TCL-1 group (TCL-1/Actin ratio < 0.56). Median TTFT 

was 5.4 years in the high TCL-1 group and undefined in the low TCL-1 

group. !
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Figure 6.13: Evaluation of the relative expression of Histone H4 in CLL 

samples with high or low CD38 expression. iTRAQ quantification of 
proteins in the SDS fractions showed a decreased expression of Histone 

H4 in CD38+ CLL compared with CD38– CLL samples (A). Proteins from 
the SDS fractions of CLL samples were resolved by SDS-PAGE followed 

by proteins transfer onto PVDF membrane and antibody detection using a 

specific antibody to Histone H4 (B). The analysis showed no significant 
change in Histone H4 expression in CD38+ CLL compared to CD38− CLL 

(C).!
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Figure 6.14: Expression of Histone H4 in CLL cells with other 

prognostic markers. Example of histone H4 expression in CLL samples 
(A). The analysis of Histone H4 in CLL samples showed that it did not 

exhibit significantly altered expression in patients with other poor 
prognostic (B-D).!
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median TTFT was 7.1 years in the high Histone H4 group and 3.9 years in the 

low Histone H4 group. However, both groups included patients who did not 

require treatment 11.7 years following diagnosis. This undoubtedly contributed 

to the lack of significant difference in TTFT between the two groups (p= 0.31, 

n= 15, Figure 6.15).  

 

6.2.3.3 Validation of myosin-9 in CLL samples 

 Quantitative proteomics analysis demonstrated that mysoin-9 

was reduced in the SDS fraction of CLL samples from patients in more 

advanced stages of CLL compared to patients with early stage disease (p= 

0.03, n= 10, Figure 6.16A). The altered expression of myosin-9 in CLL 

samples was validated in the SDS fractions of 16 CLL samples (8 Binet stage 

B/C samples versus 8 Binet stage A CLL samples). Following SDS-PAGE and 

western blotting myosin-9 was measured using a specific antibody (Figure 

6.16B). The normalised myosin-9/Actin data from 16 patients confirmed that 

myosin-9 expression was decreased in CLL samples from patients in Binet 

stage B/C  (p= 0.0001, n= 16, Figure 6.16C). 

 

 The next step was to investigate if myosin-9 expression also 

changed in CLL samples on the basis of other prognostic markers. Example 

of the expression of myosin-9 in CLL samples is shown in Figure 6.17A. The 

analysis showed no significant change in myosin-9 expression in CD38+ CLL 

compared to CD38− CLL (p= 0.47, n= 15, Figure 6.17B). In contrast, myosin-9 
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was significantly lower-expressed in ZAP-70+ CLL (p= 0.05, n= 16, Figure 

1.17C) and U-CLL (p= 0.01, n= 12, Figure 6.17D).  

 

 The potential association of myosin-9 with poor prognostic 

markers (ZAP-70+, unmutated IGHV genes and Binet stage B/C) prompted an 

evaluation of the influence of low myosin-9 expression on the need for 

treatment in CLL patients. The TTFT of patients with high and low of myosin-9, 

as defined by the median expression of myosin-9, was analysed using the 

Log-rank test and graphically represented using Kaplan-Meier curves. The 

median follow up was 7.41 years in the high myosin-9 group and was 4.84 

years in the low myosin-9 group. The two groups exhibited different TTFT; 

median TTFT was 1.64 years in the low myosin-9 group and was undefined in 

high myosin-9 group but this was not statistically significant (p= 0.1, n= 16, 

Figure 6.18).  

 

6.2.4 Proteins with the most heterogeneous expression in CLL 

 samples 

 The quantitative proteomics analysis (chapter five) showed that 

14 proteins were found with a heterogeneous expression in CLL. However, 

the expression of these proteins was not significantly associated with 

commonly used prognostic markers in CLL such as CD38, ZAP-70, IGHV 

mutational status and Binet stage. The largest dynamic range of expression in 

CLL samples as defined by standard deviation was observed for S100A9 and  
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Figure 6.15: Kaplan-Meier curve comparing time period from 

diagnosis to the first treatment in CLL patients with high or low 
expression of histone H4. Patients were divided into two groups using 

the median of Histone H4 expression; high Histone H4 group (Histone 
H4/Actin ratio > 0.74) and low Histone H4 group (Histone H4/Actin ratio 

< 0.74). Median TFT was 7.1 years in the high Histone H4 CLL patients 

group and 3.9 years in low Histone H4 CLL patients group. The analysis 
demonstrated that the difference in TTFT of the two groups was not 

significant (p= 0.31).!
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Figure 6.16: Validation of the altered expression of myosin-9 in CLL 

samples. iTRAQ quantification demonstrated that myosin-9 expression 
was reduced in the SDS fractions of CLL samples from patients in stage 

B or C (A). Proteins from the SDS fractions of CLL samples were 
resolved by SDS-PAGE followed by proteins transfer onto PVDF 

membrane and antibody detection using a specific antibody to Myosin-9 

(B). The analysis demonstrated that myosin-9 was down-regulated in CLL 
samples from patients in late stages of CLL (C).!
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Figure 6.17: Expression of myosin-9 in CLL samples with other 

prognostic markers. Example of myosin-9 expression in CLL 
samples (A). The analysis of myosin-9 showed no significant 

change in its expression in CLL samples with high or low CD38 
expression (B). In contrast, myosin-9 was down-regulated in 

ZAP70+ CLL samples (C) as well as in U-CLL samples (D). !
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Figure 6.18: Kaplan-Meier curve comparing time period from 

diagnosis to the first treatment in CLL patients with high or low 
expression of myosin-9. Patients were divided into two groups using 

the median of myosin-9 expression; high myosin-9 group (myosin-9/
Actin ratio > 0.57) and low myosin-9 group (myosin-9/Actin ratio < 

0.57). Median TTFT was 1.64 years in the low myosin-9 group and 

undefined in the high myosin-9 group. The analysis demonstrated that 
the difference between the two groups in terms of TTFT was not 

significant (p= 0.1).!
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S100A8. Both proteins were linked to different types of cancer such as breast 

cancer and prostate cancer (Cormier et al., 2009, Hermani et al., 2005). 

S100A8 was further linked to poor prognosis of acute myeloid leukaemia 

(Nicolas et al., 2011). As a result, S100A8 was chosen for further analysis in 

additional CLL samples. 

 

6.2.4.1 Investigation of S100A8 expression in CLL samples 

 The iTRAQ relative quantification showed that S100A8 was 

variably expressed in the NP40 fraction of CLL samples (Figure 6.19A). The 

expression of S100A8 was assessed in the NP40 fraction of 18 CLL samples 

using western blotting (Figure 6.19B). The normalised S100A8/Actin data 

confirmed the heterogeneous expression of S100A8 in CLL samples and 

demonstrated that its high expression was associated with more rapid 

progression of CLL (p= 0.03, n= 18, Figure 6.19C).  

 

 Given the association of high S100A8 expression with rapid 

progression of CLL, altered expression of S100A8 in CLL samples exhibiting 

poor prognostic markers was explored. Example of S100A8 expression in CLL 

samples is shown in Figure 6.20A. The analysis showed no significant change 

in S100A8 expression in CD38+ CLL compared to CD378− CLL (p= 0.87, n= 

18, Figure 6.20B) or ZAP-70+ compared to ZAP-70− CLL (p= 0.14, n= 17, 

Figure 6.20C). Of the CLL samples that were analysed for S100A8 expression 

only one was U-CLL and two were in stage B/C. Therefore, no conclusions  
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Figure 6.19: Expression of protein S100A8 in CLL samples. iTRAQ 

quantification showed heterogeneous expression of S100A8 in the NP40 
fractions of CLL samples (A) Proteins from the NP40 fractions of CLL 

samples were resolved by SDS-PAGE followed by proteins transfer onto 
PVDF membrane and antibody detection using a specific antibody to 

S100A8 (B). The analysis confirmed the heterogeneous expression of 

S100A8 in CLL samples and showed that the high expression of S100A8 in 
CLL cells was associated with more rapid progression of the disease (C). !
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Figure 6.20: Expression of S100A8 in CLL samples with other 

prognostic markers. Example of S100A8 expression in CLL samples 
(A). The analysis of S100A8 showed no significant change in its 

expression in CLL samples with high or low CD38 expression (B) or 
ZAP-70 expression (C). !

0.0!

0.5!

1.0!

1.5!

2.0!

CD38+ CLL ! CD38− CLL!

S1
00

A8
/A

ct
in
!

p= 0.87!
n= 18!
CD38 +/− = 6!

0.0!

0.5!

1.0!

1.5!

2.0!

ZAP-70+ CLL! ZAP-70− CLL!

S1
00

A8
/A

ct
in
!

p= 0.14!
n= 17!
ZAP-70  +/− = 0.13!

234 

Actin!

S100A8!

S100A8/Actin!

(A)! CLL samples!

0.02  0.92   0.18  0.13  1.80 !

42 kDa!

11 kDa!



! +#%!

can be drawn about the expression of S100A8 on the basis of these two 

prognostic markers. 

 

 Based on the potential link between elevated expression of 

S100A8 and the progression of CLL, I investigated whether S100A8 

expression was associated with TTFT in CLL patients. As defined by median 

S100A8 expression (S100A8/Actin ratio = 0.39) patients were divided into two 

groups: a high S100A8 group and a low S100A8 group. The median follow-up 

was 4.30 years in the high S100A8 group and 10.35 years in the low S100A8 

group. TTFT data of the patients in each group were analysed by using 

Kaplan-Meier curves. The analysis revealed a significantly different TTFT in 

the two groups of patients; the median TTFT was 3.2 years in the high 

S100A8 group and not reached in the low S100A8 group (p= 0.01, n= 19, 

Figure 6.21). In fact, some patients with low S100A8 expression did not 

required treatment even >15 years following diagnosis. In contrast, all of the 

high S100A8 group received treatment despite the shorter follow-up in this 

subset. This analysis indicates potential importance of S100A8 in predicting 

TTFT in CLL patients but this remains to be confirmed in a much larger CLL 

cohort.   



Figure 6.21: Kaplan-Meier curve comparing time period from 

diagnosis to the first treatment in CLL patients with high or low 
expression of S100A8. Patients were divided into two groups using the 

median of S100A8 expression; high S100A8 group (S100A8/Actin ratio > 
0.39) and low S100A8 group (S100A8/Actin ratio < 0.39). Median time to 

first treatment (TTFT) was 3.2 years in the high S100A8 group and 

undefined in the low S100A8 group. !
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6.3  Discussion 

 In this chapter, an independent method from proteomics was 

used to validate and further invistigate six of the proteins that were identified 

as having possible involvement in CLL in chapters four and five. Historically, 

western blotting followed by specific antibody detection was the method often 

used to validate altered proteins identified by proteomics (Voss et al., 2001, 

Boyd et al., 2003, Barnidge et a., 2005, Perrot et al., 2011). In this study the 

number of proteins that were subjected to further investigations was six. This 

compares favourably with previous CLL proteomics studies in which the 

highest number of proteins chosen for validation, following proteomics 

analysis, was two (Barnidge et al., 2005, Perrot et al., 2011). 

 

 Of the six proteins that were subjected to further analyses in 

additionl cohort of CLL samples, four (TR150, TCL-1, myosin-9 and S100A8) 

showed a significant change in their expression in poor prognosis CLL 

compared with good prognosis CLL. These proteins (TCL-1, myosin-9 and 

S100A8) have been previously linked to the pathology of CLL, as will be 

discussed later in this section. This supports their identification in this project 

as having a potential role in CLL. Nevertheless, given the heterogeneity of 

CLL, investigating the expression of these four proteins in a larger cohort of 

CLL samples may be required in order to draw a more definitive conclusion 

about their prognostic impact on CLL. 
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 This chapter showed a potential association of TR150 with 

advanced stage of CLL as well as with an early need for treatment in CLL 

patients. No extensive work has been done on TR150 in the context of CLL, 

but it was reported to play a role in transcriptional co-activation and in mRNA 

splicing (Fondell et al., 1996, Lee et al., 2010). More specifically, TR150 is 

coordinately recruited to the Cyclin D1 gene and cyclin D1 mRNA to control its 

expression (Bracken et al., 2008). In the same study, knock down of TR150 

using siRNA was shown to reduce the production of mature cyclin D1 

transcripts. Cyclins, including cyclin D1, are well known regulators of the cell 

cycle (Israels and Israels, 2001).  

 

 Elevated expression of cyclin D1 has been reported in different 

types of cancer including breast cancer and prostate cancer (Kenny et al., 

1999, Drobnjak et al., 2000). In the context of leukaemia, over-expression of 

cyclin D1 is a hallmark of mantle cell lymphoma (MCL) and was also found in 

a percentage (21%) of CLL cases (Jain et al., 2002). Interestingly, cyclin D1-

positive CLL cells were found to localise to the proliferation centres of lymph 

nodes suggesting that cyclin D1 is an important factor for CLL proliferation 

(Abboudi et al., 2009). As a result, the high expression of TR150 observed in 

CLL samples from patients with advanced stage disease and those who 

required an earlier treatment is consistent with the increased propensity of 

these cells to undergo proliferation. 
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 The present study demonstrated an association of TCL-1 

expression with poor prognosis CLL and an early requirement for treatment. In 

vitro and in vivo studies have shown that over-expression of TCL-1 enhanced 

the activity of AKT kinase, which phosphorylates a wide range of proteins that 

are involved in variety of cellular processes including apoptosis and 

proliferation (Laine et al., 2000). More specifically, the same study showed 

that up-regulation of TCL-1 expression enhanced cell proliferation and 

protected cells from apoptosis. Interestingly, over-expression of TCL-1 in 

murine B-cells led to a CLL-like illness seen in a TCL-1 transgenic mouse 

model, indicating a primary role for TCL-1 in tumourigenesis (Bichi et al., 

2002). 

 

  In the context of CLL prognosis, high gene expression of TCL1A 

was reported to associate with poor prognosis CLL including U-CLL, IGHV3-

21 CLL regardless of the mutational status of their IGHV genes, CD38+ CLL 

and chromosomal aberrations of 11q and 17p (Mansouri et al., 2010). The 

same study also showed that high and low transcripts of TCL-1 segregated 

between patients with shorter survival (median = 7.0 years) and patients with 

longer survival (median = 12.2 years). In line with these findings, high protein 

expression of TCL-1 was also observed in poor prognosis CLL such as U-CLL, 

ZAP70+ CLL and a chromosomal abnormality of 11q (Herling et al., 2006). 

TCL-1 was shown to interact with ATM and activate the NF-"B pathway in 

primary CLL cells (Gaudio et al., 2012). The same study also reported that 

knock down of TCL-1 inhibited cell proliferation in lymphoma cells. 
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  TCL-1 expression was also linked to the response to treatment 

in CLL patients. The reduction of peripheral blood CD5+/CD19+ leukaemic B-

cells to less than 1% following treatment was significantly associated with 

patients who had low TCL-1 and those patients were more likely to achieve a 

complete response (Browning et al., 2007). 

 

  Although cell proliferation was reported to be inducible by over-

expression of TCL-1, Herling et al., (2006) showed that CLL differentiation and 

proliferation induced by IL-4 in vitro was associated with reduction in TCL-1 

expression. A similar expression pattern of TCL-1 is perhaps seen in lymph 

nodes, where IL4 is secreted from tumour-associated T-cells.  This may 

suggest that TCL-1 high expression is not essential for CLL proliferation and 

survival in lymph nodes where other pro-survival and proliferation signals exist. 

Nevertheless, high expression of TCL-1 may have a key role in protecting CLL 

cells in the peripheral blood from apoptosis, at least through the enhanced 

phosphorylation (inactivation) of the pro-death protein Bad (Laine et al., 2000). 

 

 The current study showed primary evidence that myosin-9 (also 

known as myosin IIA) was associated with poor prognosis of CLL. Myosin-9 

belongs to the class II myosin family, which is involved in variety of cellular 

processes such as protrusion, migration and locomotion (Sellers, 2000). 

Myosin-9 plays a role in mediating uropodal detachment from highly adhesive 

molecules (Morin et al., 2008). Importantly, loss of myosin-9 in T-cells led to a 

prolonged contact with high-endothelial venules (HEVs) (Jacobelli et al., 2010). 
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Interestingly these HEVs express large amounts of CD31 (Clark et al., 1998). 

Therefore, the low expression of myosin-9 in a subgroup of CLL samples may 

facilitate a long-lasting interaction between CD38 on CLL cells and its ligand 

CD31 on the endothelial cells. This interaction was demonstrated to promote 

CLL survival and proliferation and (Deaglio et al., 2005, Deaglio et al., 2010). 

Moreover, in vivo analysis reported that Mysoin-9 deficient T-cells 

accumulated in lymph nodes for a longer time period compared to control T-

cells (Jacobelli et al., 2010). Subsequently, CLL cells expressing low amounts 

of myosin-9 may be retained in lymph nodes for a longer time period 

exploiting the pro-survival and proliferation signals that exist in lymph nodes 

leading to CLL survival and proliferation (Mainou-Fowler et al., 2001, Burger, 

2012).  

  

 Autoreactivity of BCR to myosin-9 exposed on dead cells was 

linked to poor survival in CLL patients. This autoreactivity was found in a 

subgroup of CLL patients (Chu et al., 2008, Chu et al., 2010). BCRs with 

binding activity to myosin-9 on apoptotic cells were commonly found amongst 

U-CLL and this autoreactivity was observed to inversely correlate with CLL 

patient survival (Chu et al., 2010). This indicates that myosin-9 may play a 

role in providing pro-survival signals to at least some CLL patients. 

 

 My study also indicated an association of S100A8 with the 

progression of CLL and the early need for treatment. S100 proteins are 

involved in a variety of cellular processes, such as cell cycle regulation, cell 
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growth, cell differentiation and motility, which are important biological 

functions in cancer (Heizmann et al., 2002). S100A8 was reported to be up-

regulated in different types of cancer including cancer and prostate cancer 

(Hermani et al., 2005, Cormier et al., 2009). In addition S100A8 was shown to 

support cell survival; suppression of S100A8 expression in HeLa 

contamination cells (Hep2 cells) was co-incident with increased apoptosis and 

down-regulation of BCL2 gene expression (Huang et al., 2008). In the context 

of leukaemia S100A8 mRNA was six fold over-expressed in CD38+ sub-

clones (Pepper et al., 2007). In addition, high expression of S100A8 is 

associated with short survival of AML patients (Nicolas et al., 2011). 

  

 Importantly, a relationship between the critical transcription 

factor NF-"B (Hewamana et al., 2008), and S100A8 was found. S100A8 is an 

NF-"B target gene (Nemeth et al., 2009) and over-expression of 

S100A8/S100A9 leads to greater activity of NF-"B (Benedyk et al., 2007). 

Thus, high expression of S100A8 may be indicative of increased NF-"B 

activation, which is a poor prognosis marker in CLL (Benedyk et al., 2007). 

Therefore, the potential impact of S100A8 on the pathology of CLL may 

explain the association of S100A8 with rapid progression of CLL and early 

requirement for treatment in CLL patients. 

 

 This chapter showed a potential association of TR150, TCL-1 

and S100A8 with high risk form CLL and early need for teatment. In addotion 

it demonstrated reduced expression of myosin-9 in the aggressive form of the 
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disease. These proteins were studied in cohort of CLL samples using western 

blotting. While this technique is often used to validate different expression of 

proteins following proteomics analysis (Voss et al., 2001, Boyd et al., 2003, 

Barnidge et a., 2005, Perrot et al., 2011), other methods, such as ELISA, 

would serve as more robust and reliable means of quantifying differences in 

protein expression across patient samples. 
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Chapter Seven 

Summary and General Discussion 
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7.1 Summary of the key achievements of this thesis  

• A two-step cellular fractionation method that dissolves all the CLL cell 

components and reduces sample complexity was developed.  

• A qualitative proteomics workflow (2D nano-LC-MS/MS) was performed 

to study the proteome of CLL 

o This workflow identified the most conservitive and largest 

number of proteins (n= 900) to date in CLL cells by combining 

the identifications from the NP40 and SDS fractions. These 

protein identifications were achieved with 0% FDR for the 

proteins identified with ≥2 peptides (625 proteins) and a 3.2% 

FDR for the proteins identified with single peptides (275 

proteins). 

 

o  A method of combining transcriptomic data of CLL cells and 

normal B-cells (Huttmann et al., 2006, Hutcheson et al., 2008) 

with the proteomics data of CLL cells (generated in this project) 

was described and was used to highlight proteins (n= 20) with 

possible involvement in CLL. To the best of my knowledge this 

method has not been described before for CLL cells or for other 

cell systems. 

 

• A quantitative proteomics workflow (iTRAQ 2D nano-LC-MS/MS) was 

performed to explore protein expression in poor prognosis versus good 

prognosis CLL samples.  
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o This workflow provided relative quantification of 655 proteins in 

primary CLL samples and identified preferentially altered 

proteins (n= 15) and those with the most heterogeneous 

expression that were not associated with existing prognostic 

markers (n= 14).  

 

• Of the proteins found with possible relevance to CLL (n= 49), six were 

further studied in additional cohorts of CLL samples using specific 

antibodies. The analyses indicated that TCL-1, myosin-9 and S100A8 

(section 6.3) are important in the pathology of CLL and identified 

TR150 as a novel protein with potential to be important in the prognosis 

and pathology of this disease. 
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7.2 General discussion  

 As proteins are the main functional molecules in a biological 

system (Twyla, 2004), great effort has been made to explore differences 

between poor prognosis CLL and good prognosis CLL on the basis of protein 

expression. This was performed using conventional methods such antibody 

detection of a single protein (Marschitz et al., 2000, Pepper et al., 2008,!

Damle et al., 2007) and proteomics approaches, which allow global 

identification and quantification of proteins simultaneously (Voss et al., 2001, 

Cochran et al., 2003, Barnidge et al., 2005a, Perrot et al., 2011). This project 

employed a cellular fractionation method with qualitative and quantitative 

proteomics workflows as well as western blotting/antibody detection to extend 

this type of analysis to identify more proteins with a potential role in the 

prognosis or/and the pathology of CLL. 

 

 In this project, three different strategies were applied to seek 

proteins with possible involvement in CLL. Firstly, the identified proteome of 

primary CLL samples was integrated with published transcriptomes of CLL 

cells and normal B-cells to identify proteins with preferential expression in CLL 

cells but not in normal B-cells. Secondly, using quantitative proteomics data, 

the proteome of poor prognosis CLL was compared with the proteome of good 

prognosis CLL to identify proteins with potential association with either form of 

the disease. Thirdly, the standard deviation of protein expression in five or 

more CLL samples (regardless of their known prognostic markers) was used 

to indicate proteins with the most variable expression in CLL, which had the 
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possibility of driving the heterogeneous outcome of CLL. Together these 

methods identified 49 proteins that fulfilled one of these criteria. 

 

 Among the 49 proteins, some, such as TCL-1, were already 

known to be important in CLL and high expression of TCL-1 mRNA and 

protein has been reported to be associated with poor prognosis (Bichi et al., 

2002,!Mansouri et al., 2010, Herling et al., 2006). Therefore, the identification 

of TCL-1 with an altered expression in poor prognosis CLL compared to good 

prognosis CLL provided some independent confirmation of the proteomics 

workflow that was used.  

 

 Progression of CLL is thought to be largely driven by the pro-

survival and pro-proliferation signals that exist in the cellular 

microenvironment, such as lymph nodes (section 1.1.4.2). Signal transduction 

following BCR stimulation, CD40L engagement with its receptor CD40, or 

CD38/CD31 interaction has been reported to promote survival and 

proliferation of CLL cells (Guarini et al., 2008, Quiroga et al., 2009, Granziero 

et al., 2001, Deaglio et al., 2005, Deaglio et al., 2010). This may suggest that 

active signal transduction is important for the progression of CLL. In 

agreement with this, the Gene Ontology data of the 20 proteins whose gene 

expression is preferentially expressed in CLL cells but not normal B-cells 

showed that four of them (AB1IP, GNA13, STMN1 and CD5) were involved in 

signal transduction. In particular, STMN1 was reported to mediate the 

transduction of differentiation and proliferation signals upon the activation of 
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different protein kinases including protein kinase C (PKC) and mitogen 

activated protein kinase (MAPK) (Di Paolo et al., 1996, Drouva et al., 1998,  

Sherbet and Cajone, 2005). Consistently, high gene expression of STMN1 

was demonstrated to associate with highly proliferating breast and ovarian 

cancer cells (Price et al., 2000, Curmi et al., 2000). This supports the concept 

of aberrant signal transduction in CLL cells compared to normal B-cells. 

 

 One of the pathways reported to influence CLL cells is activation 

of the transcription factor, NF-"B, which is involved in cellular survival, 

differentiation, and proliferation (section: 1.1.4.3.4). Previously, CLL cells have 

been shown to exhibit high activity of NF-"B compared to normal B-cells, but 

importantly NF-"B activity was variable among CLL patients, possibly 

reflecting the heterogeneous clinical course of CLL (Hewamana et al., 2008). 

Interestingly, patients with high activity of NF-"B, as defined by Rel A DNA 

binding, were those with short TTFT and short survival time (Hewamana et al., 

2009).  In line with these studies, 3/14 proteins (S100A8, S100A9 and 

Galectin-1), which were found to be the most variablly expressed proteins in 

CLL samples, positively regulate the activity of NF-"B as implied by their 

Gene Ontology data. For example, over-expression of S100A8 and S100A9 

was shown to increase the activation of NF-"B in a human keratinocyte cell 

line (Benedyk et al., 2007). This suggests that the variable activity of NF-"B in 

CLL patients is perhaps partly driven by the heterogeneous expression of 

these three proteins. Furthermore, the association of S100A8 with short TTFT 

in CLL patients as shown by western blotting/antibody detection supports the 
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previous finding that high activity of NF-"B was associated with short TTFT 

and short survival of CLL patients (Hewamana et al., 2009). 

 

 Deregulation of proteins involved in apoptosis was reported in 

CLL (sections: 1.1.4.3.5 and 1.1.4.3.6). In fact, CLL was initially considered an 

accumulative disease that results from defective programmed cell death in the 

malignant B-cells (Dighiero, 2003, Lanasa, 2010). High expression of the anti-

apoptotic protein BCL2 is a hallmark of CLL (Hanada et al., 1993, Del Gaizo 

Moore et al., 2007, McCarthy et al., 2008). In addition, increased expression 

of another anti-apoptotic protein MCL1 was shown to be associated with early 

need for treatment as well as resistance to treatment of CLL patients (Kitada 

et al., 1998, Pepper et al., 2008). Consistently, of the 49 proteins that were 

identified with potential importance in CLL, six (IKZF3, THIM, PRDX5, PRDX2, 

FUS and ACINU) were involved in apoptosis, as indicated by their Gene 

Ontology data. For example, over-expression of THIM, which was absent from 

the transcriptomes of normal B-cells but present in the transcriptomes and 

proteomes of CLL cells, was shown to protect from apoptosis in human 

hepatocellular carcinoma cell line and human osteosarcoma cell line (Cao et 

al., 2008). In addition, depletion of PRDX5, which was up-regulated in ZAP-

70+ CLL compared to ZAP-70– CLL, was reported to make a human 

neuroblastoma cell line more prone to apoptosis and oxidative damage (De 

Simoni et al., 2008). Similarly, over-expression of PRDX5 in primary human 

tendon cells was shown to protect these cells from apoptosis (Yuan et al., 

2004). In addition, high expression of PRDX2, which was observed with 
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variable expression in CLL samples, was reported to protect from apoptosis in 

murine pancreatic beta cell line (Zhao and Wang, 2012). This may re-

emphasize the relevance of the aberrant apoptosis in the pathology of CLL. 

  

 Although the clinical course of poor prognosis CLL and good 

prognosis CLL is remarkably different, these two forms share common gene 

expression profiles. Two independent studies compared the gene expression 

profile of U-CLL with that of M-CLL and found that only a small proportion of 

genes exhibited altered expression in these subtypes of CLL samples (Klein 

et al., 2001); Rosenwald et al., 2001). Of approximately 12,000 transcripts 

that were studied by Klein et al. (2001), 23 mRNA were found with altered 

expression in U-CLL versus M-CLL. In addition, by using more comprehensive 

microarray chips containing 17,856 human cDNAs, Rosenwald et al. (2001) 

showed that approximately 175 mRNA were differentially expressed in U-CLL 

compared to M-CLL. In the context of protein expression profiling, three 

independent CLL proteomics studies compared the proteome of U-CLL with 

that of M-CLL using different proteomics approaches and identified a small 

number of differentially expressed proteins in the two subtypes of CLL: 4 

proteins (Cochran et al., 2003), 13 proteins (Barnidge et al., 2005) and 5 

proteins (Perrot et al., 2011). In the present study, multiple comparisons on 

the basis of different prognostic markers (CD38, ZAP-70, mutational status of 

IGHV and Binet staging system) were conducted on the proteome of poor 

prognosis CLL versus the proteome of good prognosis CLL. Of the 655 

proteins that were relatively quantified in CLL samples, 15 proteins were 
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identified with an altered expression in the two forms of CLL. The small 

number of mRNA and proteins with altered expression in the poor prognosis 

CLL compared to good prognosis CLL may indicate that CLL cells, 

irrespective of their prognostic markers, follow the same mechanism of 

malignant transformation or they originate from a common precursor 

(Rosenwald et al., 2001, Seifert et al., 2012). 

 

 Reflecting on some of the limitations of this study, three different 

issues have arisen. Firstly, only viable CLL cells were utilized for proteomics 

analysis. This avoided attributing changes in protein expression to variation in 

the viability of CLL samples. However, patient samples vary in their viability, 

as part of CLL heterogeneity, and thus it is possible that I selected a more 

homogeneous population that did not reflect the full range of CLL pathology. 

The inclusion of samples with more heterogeneous levels of viability might 

have identified more altered proteins in poor prognosis CLL versus good 

prognosis CLL. However, this may have biased my analysis towards pro-

apoptotic protein discovery. 

 

 A second limitation of the workflow is the larger number of LC-

MALDI runs that must be completed because of the two-step cellular 

fractionation. As discussed previously, reducing sample complexity is a 

valuable step in proteomics analyses  (Ahmed, 2009, Huber et al., 2003, 

Dredger, 2003). While this fractionation method had the potential to extract all 
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cellular proteins and reduce the sample complexity, it doubled the number of 

samples required for proteomics analyses.  

 Finally, quantitative proteomics analysis (chapter five) showed 

that Histone H4 was down-regulated in the SDS fractions of CD38+ CLL 

compared to CD38− CLL (iTRAQ signal: CD38+ CLL versus CD38− CLL= 0.75, 

p= 0.05, n= 12, Figure 5.7F). However, the validation of Histone H4 

expression in additional CD38+ CLL versus CD38– CLL samples 

demonstrated no significant change in the expression of Histone H4 (p= 0.8, 

n= 17, Figure 6.13C). In an attempt to understand why this happened, the 

proteomics quantitative data of Histone H4 was re-analysed. In particular, I 

looked at whether post-translational modifications may have led to a cleavage 

in Histone H4 in CD38+ CLL but not in CD38– CLL samples. This might cause 

the number of distinct peptides that were used for Histone H4 quantification to 

be less in CD38+ CLL compared to CD38– CLL samples. Consequently, low 

iTRAQ signals in CD38+ CLL compared to CD38– CLL samples would be 

reported despite the similar expression of histone H4 in the two types of CLL 

samples. The analysis showed that the same peptides (that belong to Histone 

H4) were, in fact, identified and quantified in both sets of CLL samples. Given 

the heterogeneity of CLL, the different findings of the expression of Histone 

H4 reported by quantitative proteomics and western blotting in a separate 

validation cohort might simply reflect the heterogeneity between CLL samples. 

 

 In summary, this project utilised a cellular fractionation method 

combined with gel-free proteomics approaches to characterize the proteome 
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of poor prognosis and good prognosis CLL. In total 900 proteins were 

identified, of which 49 had the potential to be important in CLL (as defined by 

the criteria described in this thesis). Of these proteins, six were studied in 

additional patient samples and 4/6 (TR150, TCL-1, myosin-9 and S100A8) 

showed a potential link to the prognosis and the pathology of CLL. Given the 

variability in CLL, these proteins now need to be evaluated in a larger cohort 

in order to confirm the importance of these proteins in the prognosis and the 

pathology of CLL. 
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7.3 Future work 

 Following the development of the cellular fractionation method 

and the proteomics workflows, it is now possible to use these methods to 

explore how the proteome of CLL probably changes following the exposure to 

various pro-survival and proliferation signals including:  

• BCR stimulation  

• CD38/CD31 interaction 

•  Accessory cells such as T-cells, nurse-like cells and bone marrow 

stroma in order to mimic the impact of the microenvironment 

This could improve our understanding about CLL and probably help to identify 

therapeutic targets for CLL treatment 

 

 Based on the potential importance of the 49 proteins in CLL, 

reported in this study, it would be interesting to explore these proteins in a 

larger CLL sample cohort in order to investigate more fully their potential 

impact on CLL prognosis and pathology, in particular: 

• The link between TR150 expression and cellular proliferation 

through the enhanced expression of Cyclin D1 transcripts (Bracken 

et al., 2008)  

• Given the positive influence of S100A8 and S100A9 on the 

activation of NF-"B (Benedyk et al., 2007), it would be interesting to 

explore the potential association of these two proteins with 

activation of the NF-"B pathway in CLL. This may allow the use of 

S100A8 as a surrogate marker of NF-"B activity in CLL. In addition, 
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S100A8 and S100A9 may serve as therapeutic targets to inhibit the 

NF-"B pathway for CLL treatment.  

• Based on the preliminary evidence shown in this study of the 

potential importance of TR150 and S100A8 in predicting TTFT in 

CLL patients, assessing their expression in a larger cohort of CLL 

samples may be a valid option to confirm their value in predicting 

TTFT in CLL patients. 
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Appendices 

 



(A)!

(B)!

Appendix 1: Examples of peptides separation on the 2D nano-LC with 

poorly functioning columns. Peptides were separated on an SCX column 
using six salt fractions with an increasing salt concentration. Each salt 

fraction was then further separated on an RP column. This figure shows that 
the majority of the peptides did not bind to the SCX column as the 

breakthrough fraction (black line) was observed with very high absorbance 

signal. In addition, very few peaks were seen in the rest of the salt fractions 
especially in  Appendix A.!
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MAECPTLGEAVTDHPDRLWAWEKFVYLDEKQHAWLPLTIEIKDRLQLRVLLRREDVVLGRPMTPTQIGPSLL
PIMWQLYPDGRYRSSDSSFWRLVYHIKIDGVEDMLLELLPDD!

T-cell leukemia/lymphoma protein 1A (!"#$%&'()%*) !

K[IT4]                             I                 H                      Y                  V            L!

R              Q           L            E          A          E          S                 D  K[IT4]  L!

MSVSARSAAAEERSVNSSTMVAQQKNLEGYVGFANLPNQVYRKSVKRGFEFTLMVVGESGLGKSTLINSLFLT
DLYSPEYPGPSHRIKKTVQVEQSKVLIKEGGVQLLLTIVDTPGFGDAVDNSNCWQPVIDYIDSKFEDYLNAESRV
NRRQMPDNRVQCCLYFIAPSGHGLKPLDIEFMKRLHEKVNIIPLIAKADTLTPEECQQFKKQIMKEIQEHKIKIYEF
PETDDEEENKLVKKIKDRLPLAVVGSNTIIEVNGKRVRGRQYPWGVAEVENGEHCDFTILRNMLIRTHMQDLKDV
TNNVHYENYRSRKLAAVTYNGVDNNKNKGQLTKSPLAQMEEERREHVAKMKKMEMEMEQVFEMKVKEKVQK
LKDSEAELQRRHEQMKKNLEAQHKELEEKRRQFEDEKANWEAQQRILEQQNSSRTLEKNKKKGKIF!

+,-./0123+45!1&'()%*62

Appendix 4: Examples of peptides that were used to identify proteins 

with altered expression in CD38+ CLL samples compared to CD38– CLL 
samples. This figure shows in “Red Bold” specific peptides and in “Blue 

Bold” common peptides that were used to identify these proteins (A, C, E, G, I 
and L). One MS/MS spectra is also shown for one specific peptide in each 
protein (B, D, F, H, J and L). For simplicity only y ions are shown in these MS/
MS spectra. Peptides, of which MS/MS spectra are shown, are marked with a 
rectangle  P E P T I D E . The sequence identified in each MS/MS spectra is 
read from the C-terminus as only y ions were shown in the MS/MS spectra. 
Underlining was used to discriminate between adjacent peptides that were 
identified.!

(A)!

(B)!

(C)!

(D)!
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MSGRGKGGKGLGKGGAKRHRKVLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRGVLKVFLENVIRDAVTY
TEHAKRKTVTAMDVVYALKRQGRTLYGFGG!

Histone H4 (H4_HUMAN)!

MSYGRPPPDVEGMTSLKVDNLTYRTSPDTLRRVFEKYGRVGDVYIPRDRYTKESRGFAFVRFHDKRDAEDAM
DAMDGAVLDGRELRVQMARYGRPPDSHHSRRGPPPRRYGGGGYGRRSRSPRRRRRSRSRSRSRSRSRSRS
RYSRSKSRSRTRSRSRSTSKSRSARRSKSKSSSVSRSRSRSRSRSRSRSPPPVSKRESKSRSRSKSPPKSPEE
EGAVSS!

Splicing factor, arginine/serine-rich 2 (SFRS2_HUMAN)!

R                  G                Y                  G       G          G  G              Y!

R            T           E             E              Y                I             L       G       S            I !

MEKTELIQKAKLAEQAERYDDMATCMKAVTEQGAELSNEERNLLSVAYKNVVGGRRSAWRVISSIEQKTDTSDKK
LQLIKDYREKVESELRSICTTVLELLDKYLIANATNPESKVFYLKMKGDYFRYLAEVACGDDRKQTIDNSQGAYQEA
FDISKKEMQPTHPIRLGLALNFSVFYYEILNNPELACTLAKTAFDEAIAELDTLNEDSYKDSTLIMQLLRDNLTLWTSD
SAGEECDAAEGAEN!

14-3-3 protein theta (1433T_HUMAN)!

R             E             E          N        S        L           E  A  G            Q            E           T  V  A!

Appendix 4 continued: Examples of peptides that were used to identify 

proteins with altered expression in CD38+ CLL samples compared to 
CD38– CLL samples.!

(H)!

(G)!

(I)!

(J)!

(E)!

(F)!
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MPEPAKSAPAPKKGSKKAVTKAQKKDGKKRKRSRKESYSIYVYKVLKQVHPDTGISSKAMGIMNSFVNDIFERIAGEAS
RLAHYNKRSTITSREIQTAVRLLLPGELAKHAVSEGTKAVT KYTSSK!

K[IT4]                Y            V           Y             I         S         Y          S          E          K[IT4] !

Histone H2B type 2-E (H2B2E_HUMAN)!
(K)!

(L)!

Appendix 4 continued: Examples of peptides that were used to identify 

proteins with altered expression in CD38+ CLL samples compared to CD38– 
CLL samples.!
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Peptide sequence! Confidence %! CD38+ CLL! CD38+ CLL! CD38− CLL!

FVYLDEK! 99! 1.55! 1.74! 1.13!

FVYLDEK! 99! 1.72! 2.27! 0.84!

LWAWEK! 99! 2.45! 2.70! 1.13!

LVYHIK! 99! 2.17! 2.66! 0.89!

LVYHIK! 98! 1.93! 2.64! 1.04!

LWAWEK! 97! 3.04! 3.77! 0.93!

Protein TCL-1! Identified with 3 different peptides! 2.26 2.80 0.97 

Appendix 5 : Examples of the relative quantification of peptides that 

were used to measure the relative expression of TCL-1 in the NP40 
fractions of CLL samples!

Identification and relative quantification of labelled peptides were 

performed by MALDI mass spectrometry and ProteinPilot using the 
Paragon and ProGroup algorithms. This table shows the relative 

quantification of peptides that were mapped to TCL-1. The relative 
quantification of these peptides was used to determine the relative 

expression of TCL-1 in CLL samples. The examples shown in this table 

were extracted from one iTRAQ LC-MALDI mass spectrometry 
experiment (NP40 fraction) containing three CLL samples with a 

reference sample. !
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114 and 115: two CD38+ CLL samples!

116: CD38− CLL sample !

117: NP40 reference sample!

Appendix 6: Identification and relative quantification of a specific peptide 

in TCL-1. Following separation of labelled peptides by 2D nano-LC, they were 
analysed by MALDI mass spectrometry and ProteinPilot software using the 

Paragon and ProGroup algorithms. This figure shows MS/MS spectra of a 
specific peptide in TCL-1 (LVYHIK) (A) as well as the relative quantification of 

this peptide in the NP40 fractions of three CLL samples in relation to the NP40 

reference sample (B). For simplicity only y ions were shown in these MS/MS 
spectra. The sequence identified in the MS/MS spectra is read from the C-

terminus.!

K[IT4]                             I                 H                      Y                  V            L!(A)!

(B)!
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Peptide sequence! Confidence %! CD38+ CLL! CD38− CLL! CD38− CLL!

DAVTYTEHAK! 99! 0.53! 1.21! 1.24!

DAVTYTEHAK! 99! 0.87! 1.64! 1.64!

DAVTYTEHAK! 99! 0.83! 1.66! 1.58!

DAVTYTEHAK! 99! 1.05! 1.62! 1.60!

DNIQGITKPAIR! 99! 0.78! 1.41! 1.29!

DNIQGITKPAIR! 99! 0.78! 1.56! 1.43!

DNIQGITKPAIR! 99! 0.85! 1.43! 1.35!

DNIQGITKPAIR! 99! 0.83! 1.58! 1.47!

ISGLIYEETR! 99! 0.49! 1.52! 1.47!

ISGLIYEETR! 99! 0.49! 1.33! 1.41!

ISGLIYEETR! 99! 0.58! 1.49! 1.51!

ISGLIYEETR! 99! 0.52! 1.32! 1.14!

ISGLIYEETR! 99! 0.55! 1.36! 1.40!

ISGLIYEETR! 99! 0.97! 1.75! 1.81!

ISGLIYEETR! 99! 0.79! 0.82! 0.77!

TVTAMDVVYALK! 99! 1.11! 1.23! 1.46!

TVTAMDVVYALK! 99! 0.94! 1.20! 1.28!

TVTAMDVVYALK! 99! 0.89! 1.14! 1.29!

VFLENVIR! 99! 0.54! 1.09! 1.10!

VFLENVIR! 99! 0.70! 1.29! 1.25!

VFLENVIR! 99! 0.71! 1.42! 1.35!

VFLENVIR! 99! 0.92! 1.72! 1.76!

VFLENVIR! 99! 0.76! 1.44! 1.40!

VFLENVIR! 99! 0.70! 1.50! 1.22!

VFLENVIR! 99! 0.74! 1.50! 1.44!

RISGLIYEETR! 95! 0.71! 1.16! 0.86!

Protein Histone H4! Identified with 17 different peptides! 0.72 1.43 1.39 

Identification and relative quantification of labelled peptides were 

performed by MALDI mass spectrometry and the ProteinPilot using 
Paragon and ProGroup algorithms. This table shows realtive 

quantification of peptides that were mapped to Histone H4 .The relative 
quantification of these peptides were used to determine the relative 

expression of Histone H4 in CLL samples. The examples shown in this 

figure were extracted from one iTRAQ LC-MALDI mass spectrometry 
experiment (SDS fraction) containing three CLL samples with a reference 

sample. !

Appendix 7: Examples of the relative quantification of peptides that 

were used to measure the relative expression of Histone H4 in the 
SDS fractions of CLL samples!
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114.0725!

117.0852!

114: SDS reference!

115: CD38+ CLL sample !

116 and 117: CD38− CLL samples!

R            T           E             E              Y                I             L       G       S            I !

Appendix 8: Identification and the relative quantification of a specific 

peptide in Histone H4. Following separation of labelled peptides by 2D 
nano-LC, they were analysed by MALDI mass spectrometry and the 

ProteinPilot software using Paragon and ProGroup algorithms. This figure 
shows MS/MS spectra of a specific peptide in TCL-1 (ISGLIYEETR) (A) as 

well as the relative quantification of this peptide in the SDS fractions of three 

CLL samples in relation to the SDS reference sample (B). For simplicity only 
y ions were shown in these MS/MS spectra. The sequence identified in the 

MS/MS spectra is read from the C-terminus.!

(A)!

(B)!
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K[IT4]                   E               F              E            E                  K[IT4]                  Y!

MNPNCARCGKIVYPTEKVNCLDKFWHKACFHCETCKMTLNMKNYKGYEKKPYCNAHYPKQSFTMVADTPEN
LRLKQQSELQSQVRYKEEFEKNKGKGFSVVADTPELQRIKKTQDQISNIKYHEEFEKSRMGPSGGEGMEPER
RDSQDGSSYRRPLEQQQPHHIPTSAPVYQQPQQQPVAQSYGGYKEPAAPVSIQRSAPGGGGKRYRAVYDYS
AADEDEVSFQDGDTIVNVQQIDDGWMYGTVERTGDTGMLPANYVEAI!

LIM and SH3 domain protein 1 (LASP1_HUMAN)!

MEMGRRIHLELRNRTPSDVKELVLDNSRSNEGKLEGLTDEFEELEFLSTINVGLTSIANLPKLNKLKKLELSDNR
VSGGLEVLAEKCPNLTHLNLSGNKIKDLSTIEPLKKLENLKSLDLFNCEVTNLNDYRENVFKLLPQLTYLDGYDR
DDKEAPDSDAEGYVEGLDDEEEDEDEEEYDEDAQVVEDEEDEDEEEEGEEEDVSGEEEEDEEGYNDGEVDD
EEDEEELGEEERGQKRKREPEDEGEDDD!

R                     S             N                D                  L  V                       L                   E !

MADDVDQQQTTNTVEEPLDLIRLSLDERIYVKMRNDRELRGRLHAYDQHLNMILGDVEETVTTIEIDEETYE
EIYKSTKRNIPMLFVRGDGVVLVAPPLRVG!

U6 snRNA-associated Sm-like protein LSm3 (LSM3_HUMAN)!

 R                   V               F                   L                    M  P                       I              N  !

Acidic leucine-rich nuclear phosphoprotein 32 family member A (AN32A_HUMAN) !

Appendix 10: Examples of peptides that were used to identify proteins with 

altered expression in ZAP-70+ CLL samples compared to ZAP-70–  CLL samples. 
This figure shows in “Red Bold” specific peptides and in “Blue Bold” common peptides 
that were used to identify these proteins (A, C, E, G, I and K). One MS/MS spectra is 
shown for one specific peptide in each protein (B, D, F, H, J and L). For simplicity only y 
ions were shown in these MS/MS spectra. Peptides, of which MS/MS spectra are 
shown, were marked with a rectangle  P E P T I D E . The sequence identified in each 
MS/MS spectra is read from the C-terminus as only y ions were shown in the MS/MS 
spectra. Underlining was used to discriminate between adjacent peptides that were 
identified.!

(A)!

(C)!

(D)!

(E)!

(B)!

(F)!
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MASNDYTQQATQSYGAYPTQPGQGYSQQSSQPYGQQSYSGYSQSTDTSGYGQSSYSSYGQSQNTGYGTQSTPQGYG
STGGYGSSQSSQSSYGQQSSYPGYGQQPAPSSTSGSYGSSSQSSSYGQPQSGSYSQQPSYGGQQQSYGQQQSYNP
PQGYGQQNQYNSSSGGGGGGGGGGNYGQDQSSMSSGGGSGGGYGNQDQSGGGGSGGYGQQDRGGRGRGGSGG
GGGGGGGGYNRSSGGYEPRGRGGGRGGRGGMGGSDRGGFNKFGGPRDQGSRHDSEQDNSDNNTIFVQGLGENVTI
ESVADYFKQIGIIKTNKKTGQPMINLYTDRETGKLKGEATVSFDDPPSAKAAIDWFDGKEFSGNPIKVSFATRRADFNRGG
GNGRGGRGRGGPMGRGGYGGGGSGGGGRGGFPSGGGGGGGQQRAGDWKCPNPTCENMNFSWRNECNQCKAPK
PDGPGGGPGGSHMGGNYGDDRRGGRGGYDRGGYRGRGGDRGGFRGGRGGGDRGGFGPGKMDSRGEHRQDRRE
RPY!

K[IT4]                           I  P                     N          G        S                F              E      !

RNA-binding protein FUS (FUS_HUMAN)!

MPKRGKKGAVAEDGDELRTEPEAKKSKTAAKKNDKEAAGEGPALYEDPPDQKTSPSGKPATLKICSWNVDGLRAW
IKKKGLDWVKEEAPDILCLQETKCSENKLPAELQELPGLSHQYWSAPSDKEGYSGVGLLSRQCPLKVSYGIGDEEH
DQEGRVIVAEFDSFVLVTAYVPNAGRGLVRLEYRQRWDEAFRKFLKGLASRKPLVLCGDLNVAHEEIDLRNPKGNKK
NAGFTPQERQGFGELLQAVPLADSFRHLYPNTPYAYTFWTYMMNARSKNVGWRLDYFLLSHSLLPALCDSKIRSK
ALGSDHCPITLYLAL!

  R                     E                Q               P            T                F              G       A         N!

DNA-(apurinic or apyrimidinic site) lyase (APEX1_HUMAN)!

MGLAGVCALRRSAGYILVGGAGGQSAAAAARRYSEGEWASGGVRSFSRAAAAMAPIKVGDAIPAVEVFEGEPGNKVN
LAELFKGKKGVLFGVPGAFTPGCSKTHLPGFVEQAEALKAKGVQVVACLSVNDAFVTGEWGRAHKAEGKVRLLADPT
GAFGKETDLLLDDSLVSIFGNRRLKRFSMVVQDGIVKALNVEPDGTGLTCSLAPNIISQL!

K[IT4]              V           I  G             D           Q           V         V  M  S  F !

Peroxiredoxin-5, mitochondrial (PRDX5_HUMAN)!

Appendix 10 continued: Examples of peptides that were used to identify 

proteins with altered expression in ZAP-70+ CLL samples compared to 
ZAP-70–  CLL samples. !

(K)!

(L)!

(I)!

(J)!

(G)!

(H)!
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  K[IT4]                  E              F               E            E                  K[IT4]               Y!

MNPNCARCGKIVYPTEKVNCLDKFWHKACFHCETCKMTLNMKNYKGYEKKPYCNAHYPKQSFTMVADTPENLRLK
QQSELQSQVRYKEEFEKNKGKGFSVVADTPELQRIKKTQDQISNIKYHEEFEKSRMGPSGGEGMEPERRDSQDGS
SYRRPLEQQQPHHIPTSAPVYQQPQQQPVAQSYGGYKEPAAPVSIQRSAPGGGGKRYRAVYDYSAADEDEVSFQD
GDTIVNVQQIDDGWMYGTVERTGDTGMLPANYVEAI!

LIM and SH3 domain protein 1 (LASP1_HUMAN)!

MAGLNSLEAVKRKIQALQQQADEAEDRAQGLQRELDGERERREKAEGDVAALNRRIQLVEEELDRAQERLATALQ
KLEEAEKAADESERGMKVIENRAMKDEEKMEIQMQLKEAKHIAEEADRKYEEVARKLVILEGELERAEERAEVSELKC
GDLEEELKNVTNNLKSLEAASEKYSEKEDKYEEEIKLLSDKLKEAETRAEFAERTVAKLEKTIDDLEEKLAQAKEENVG
LHQTLDQTLNELNCI!

R              N          L         A      A      V         D  G                 E  A  K[IT4]                            E!

Tropomyosin alpha-4 chain (TPM4_HUMAN) !
(A)!

(B)!

(C)!

(D)!

Appendix 11: Examples of peptides that were used to identify proteins 

with altered expression in UM-CLL samples compared to M-CLL samples. 
This figure shows in “Red Bold” specific peptides and in “Blue Bold” common 
peptides that were used to identify these proteins (A, C and E). One MS/MS 
spectra is shown for one specific peptide in each protein (B, D and F). For 
simplicity only y ions were shown in these MS/MS spectra. Peptides, of which 
MS/MS spectra are shown, are marked with a rectangle  P E P T I D E . The 
sequence identified in each MS/MS spectra is read from the C-terminus as 
only y ions were shown in the MS/MS spectra.!
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Appendix 11 continued: Examples of peptides that were used to identify 

proteins with altered expression in UM-CLL samples compared to M-CLL 
samples. !

MWRRKHPRTSGGTRGVLSGNRGVEYGSGRGHLGTFEGRWRKLPKMPEAVGTDPSTSRKMAELEEVTLDGKPLQALRV
TDLKAALEQRGLAKSGQKSALVKRLKGALMLENLQKHSTPHAAFQPNSQIGEEMSQNSFIKQYLEKQQELLRQRLEREAR
EAAELEEASAESEDEMIHPEGVASLLPPDFQSSLERPELELSRHSPRKSSSISEEKGDSDDEKPRKGERRSSRVRQARAA
KLSEGSQPAEEEEDQETPSRNLRVRADRNLKTEEEEEEEEEEEEDDEEEEGDDEGQKSREAPILKEFKEEGEEIPRVKPE
EMMDERPKTRSQEQEVLERGGRFTRSQEEARKSHLARQQQEKEMKTTSPLEEEEREIKSSQGLKEKSKSPSPPRLTEDR
KKASLVALPEQTASEEETPPPLLTKEASSPPPHPQLHSEEEIEPMEGPAPAVLIQLSPPNTDADTRELLVSQHTVQLVGGLSP
LSSPSDTKAESPAEKVPEESVLPLVQKSTLADYSAQKDLEPESDRSAQPLPLKIEELALAKGITEECLKQPSLEQKEGRRAS
HTLLPSHRLKQSADSSSSRSSSSSSSSSRSRSRSPDSSGSRSHSPLRSKQRDVAQARTHANPRGRPKMGSRSTSESRS
RSRSRSRSASSNSRKSLSPGVSRDSSTSYTETKDPSSGQEVATPPVPQLQVCEPKERTSTSSSSVQARRLSQPESAEKH
VTQRLQPERGSPKKCEAEEAEPPAATQPQTSETQTSHLPESERIHHTVEEKEEVTMDTSENRPENDVPEPPMPIADQVSN
DDRPEGSVEDEEKKESSLPKSFKRKISVVSATKGVPAGNSDTGGQPGRKRRWGASTATTQKKPSISITTESLKSLIPDIKPL
AGQEAVVDLHADDSRISEDETERNGDDGTHDKGLKICRTVTQVVPAEGQENGQREEEEEEKEPEAEPPVPPQVSVEVAL
PPPAEHEVKKVTLGDTLTRRSISQQKSGVSITIDDPVRTAQVPSPPRGKISNIVHISNLVRPFTLGQLKELLGRTGTLVEEAF
WIDKIKSHCFVTYSTVEEAVATRTALHGVKWPQSNPKFLCADYAEQDELDYHRGLLVDRPSETKTEEQGIPRPLHPPPPPP
VQPPQHPRAEQREQERAVREQWAEREREMERRERTRSEREWDRDKVREGPRSRSRSRDRRRKERAKSKEKKSEKKE
KAQEEPPAKLLDDLFRKTKAAPCIYWLPLTDSQIVQKEAERAERAKEREKRRKEQEEEEQKEREKEAERERNRQLEREKR
REHSRERDRERERERERDRGDRDRDRERDRERGRERDRRDTKRHSRSRSRSTPVRDRGGRR!

K[IT4                    Q               T           T         A        T           S          A  G          W!

Apoptotic chromatin condensation inducer in the nucleus (ACINU_HUMAN)!
(E)!

(F)!
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MAQQAADKYLYVDKNFINNPLAQADWAAKKLVWVPSDKSGFEPASLKEEVGEEAIVELVENGKKVKVNKDDIQKMNPP
KFSKVEDMAELTCLNEASVLHNLKERYYSGLIYTYSGLFCVVINPYKNLPIYSEEIVEMYKGKKRHEMPPHIYAITDTAYR
SMMQDREDQSILCTGESGAGKTENTKKVIQYLAYVASSHKSKKDQGELERQLLQANPILEAFGNAKTVKNDNSSRFGK
FIRINFDVNGYIVGANIETYLLEKSRAIRQAKEERTFHIFYYLLSGAGEHLKTDLLLEPYNKYRFLSNGHVTIPGQQDKDM
FQETMEAMRIMGIPEEEQMGLLRVISGVLQLGNIVFKKERNTDQASMPDNTAAQKVSHLLGINVTDFTRGILTPRIKVG
RDYVQKAQTKEQADFAIEALAKATYERMFRWLVLRINKALDKTKRQGASFIGILDIAGFEIFDLNSFEQLCINYTNEKLQQ
LFNHTMFILEQEEYQREGIEWNFIDFGLDLQPCIDLIEKPAGPPGILALLDEECWFPKATDKSFVEKVMQEQGTHPKFQK
PKQLKDKADFCIIHYAGKVDYKADEWLMKNMDPLNDNIATLLHQSSDKFVSELWKDVDRIIGLDQVAGMSETALPGAFK
TRKGMFRTVGQLYKEQLAKLMATLRNTNPNFVRCIIPNHEKKAGKLDPHLVLDQLRCNGVLEGIRICRQGFPNRVVFQE
FRQRYEILTPNSIPKGFMDGKQACVLMIKALELDSNLYRIGQSKVFFRAGVLAHLEEERDLKITDVIIGFQACCRGYLARK
AFAKRQQQLTAMKVLQRNCAAYLKLRNWQWWRLFTKVKPLLQVSRQEEEMMAKEEELVKVREKQLAAENRLTEMET
LQSQLMAEKLQLQEQLQAETELCAEAEELRARLTAKKQELEEICHDLEARVEEEEERCQHLQAEKKKMQQNIQELEEQ
LEEEESARQKLQLEKVTTEAKLKKLEEEQIILEDQNCKLAKEKKLLEDRIAEFTTNLTEEEEKSKSLAKLKNKHEAMITDL
EERLRREEKQRQELEKTRRKLEGDSTDLSDQIAELQAQIAELKMQLAKKEEELQAALARVEEEAAQKNMALKKIRELE
SQISELQEDLESERASRNKAEKQKRDLGEELEALKTELEDTLDSTAAQQELRSKREQEVNILKKTLEEEAKTHEAQIQE
MRQKHSQAVEELAEQLEQTKRVKANLEKAKQTLENERGELANEVKVLLQGKGDSEHKRKKVEAQLQELQVKFNEGE
RVRTELADKVTKLQVELDNVTGLLSQSDSKSSKLTKDFSALESQLQDTQELLQEENRQKLSLSTKLKQVEDEKNSFRE
QLEEEEEAKHNLEKQIATLHAQVADMKKKMEDSVGCLETAEEVKRKLQKDLEGLSQRHEEKVAAYDKLEKTKTRLQQE
LDDLLVDLDHQRQSACNLEKKQKKFDQLLAEEKTISAKYAEERDRAEAEAREKETKALSLARALEEAMEQKAELERLNK
QFRTEMEDLMSSKDDVGKSVHELEKSKRALEQQVEEMKTQLEELEDELQATEDAKLRLEVNLQAMKAQFERDLQGR
DEQSEEKKKQLVRQVREMEAELEDERKQRSMAVAARKKLEMDLKDLEAHIDSANKNRDEAIKQLRKLQAQMKDCMRE
LDDTRASREEILAQAKENEKKLKSMEAEMIQLQEELAAAERAKRQAQQERDELADEIANSSGKGALALEEKRRLEARI
AQLEEELEEEQGNTELINDRLKKANLQIDQINTDLNLERSHAQKNENARQQLERQNKELKVKLQEMEGTVKSKYKASIT
ALEAKIAQLEEQLDNETKERQAACKQVRRTEKKLKDVLLQVDDERRNAEQYKDQADKASTRLKQLKRQLEEAEEEAQ
RANASRRKLQRELEDATETADAMNREVSSLKNKLRRGDLPFVVPRRMARKGAGDGSDEEVDGKADGAEAKPAE!

Myosin-9 (MYH9_HUMAN)!

K!"#$%&&&&&&&&&&&&&&&&&&&&&&&'&&&&&&&&&&&&&&&(&&&&&&&&&&&)&&&&&&&&&&&&&&&&&*&&&&&&&&&&&&&&&&&+&&&&&&&&&&&&&&,&&&&&&&&&&&&&&&&-&&&&&&&&&&&&&&&&&*&&&&&&&&&&&

(A)!

(B)!

Appendix 12: Examples of peptides that were used to identify myosin 9 

that was altered in stages B/C CLL samples compared to stage A CLL 
samples. This figure shows in “Red Bold” specific peptides and in “Blue Bold” 
common peptides that were used to identify myosin-9 (A). One MSMS spectra is 
shown for one specific peptide in myosin-9 (B). For simplicity only y ions were 
shown in the MS/MS spectra. Peptide, of which MS/MS spectra is shown, is 
marked with a rectangle  P E P T I D E . The sequence identified in the MS/MS 
spectra is read from the C-terminus as only y ions were shown in the MS/MS 
spectra.!
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Appendix 13: Clinical details of the CLL patients cohort. !

IVGH <98% mutated CLL (Good prognosis); IGVH ≥98% unmutated CLL (poor 

prognosis); CD38 <20% (good prognosis); CD38 ≥20% (poor prognosis); ZAP-70 
<20% (good prognosis); ZAP-70 ≥20%(poor prognosis); B and C are advanced 

stages of CLL; A0 and A are early stage of the disease; TTFT: time of the first 
treatment; TSD: time since diagnosis with CLL.  The first 12 samples were the 

samples used for quantitative proteomic analysis.!

Samples! Age!  % CD38 ! % ZAP-70! %IGVH status! Stage! TTFT (days)! TSD (days)!
1! 90! 23! 100! C! 1245! 1459!
2! 62! 75! 2! A0! 932! 1212!
3! 87! 3! 5! 90! A0! 4194!
4! 53! 39! 2! 96! B! 2028!
5! 75! 85! 0! 96! A! 281! 2150!
6! 80! 1! 4! 98! A0! 1155!
7! 73! 67! 0! 89! A! 4764!
8! 66! 75! 35! 100! 1001!
9! 4! 3! A! 30!

10! 2! 39! 99! C! 77! 212!
11! 2!
12! 60! 2! 19! A0! 1568!
13! 76! 3! 5! 92! A! 2478!
14! 63! 4! 1! 90! A0! 1722!
15! 62! 5! 10! 94! A! 1064! 4050!
16! 5! A!
17! 68! 5! 10! A0! 1030!
18! 75! 6! 0! A0! 5674!
19! 6! 35! 91! B! 1150! 2733!
20! 62! 6! 6! 93! A! 1427! 1484!
21! 87! 9! 54! C! 58! 1321!
22! 65! 10! 8! 92! A! 1430! 1563!
23! 76! 34! 1! 100! B! 21! 3688!
24! 85! 39! 3! 91! A0! 2010! 2740!
25! 60! 41! 51! 99! B! 247! 3438!
26! 78! 52! 2! 91! A0! 190! 2737!
27! 70! 18! A! 1944! 2577!
28! 74! 80! 36! 84! A! 6160!
29! 57! 80! 44! A! 71! 1534!
30! 83! 29! A! 176! 330!
31! 75! 90! 20! 95! C! 7547!
32! 80! 92! 2! 94! A0! 2605!
33! 67! 93! 12! 93! A! 2568! 2568!
34! 85! 97! 4! 95! A! 1524! 1734!
35! 77! 1! 24! 96! A0! 3232! 3303!
36! 55! 3! 28! A0! 1282!
37! 70! 3! 5! 95! A! 708! 3725!
38! 70! 3! 2! 96! A! 389! 3287!

294 


