901 research outputs found
Two Weeks of Ischemic Conditioning Improves Walking Speed and Reduces Neuromuscular Fatigability in Chronic Stroke Survivors
This pilot study examined whether ischemic conditioning (IC), a noninvasive, cost-effective, and easy-to-administer intervention, could improve gait speed and paretic leg muscle function in stroke survivors. We hypothesized that 2 wk of IC training would increase self-selected walking speed, increase paretic muscle strength, and reduce neuromuscular fatigability in chronic stroke survivors. Twenty-two chronic stroke survivors received either IC or IC Sham on their paretic leg every other day for 2 wk (7 total sessions). IC involved 5-min bouts of ischemia, repeated five times, using a cuff inflated to 225 mmHg on the paretic thigh. For IC Sham, the cuff inflation pressure was 10 mmHg. Self-selected walking speed was assessed using the 10-m walk test, and paretic leg knee extensor strength and fatigability were assessed using a Biodex dynamometer. Self-selected walking speed increased in the IC group (0.86 ± 0.21 m/s pretest vs. 1.04 ± 0.22 m/s posttest, means ± SD; P\u3c 0.001) but not in the IC Sham group (0.92 ± 0.47 m/s pretest vs. 0.96 ± 0.46 m/s posttest; P= 0.25). Paretic leg maximum voluntary contractions were unchanged in both groups (103 ± 57 N·m pre-IC vs. 109 ± 65 N·m post-IC; 103 ± 59 N·m pre-IC Sham vs. 108 ± 67 N·m post-IC Sham; P = 0.81); however, participants in the IC group maintained a submaximal isometric contraction longer than participants in the IC Sham group (278 ± 163 s pre-IC vs. 496 ± 313 s post-IC, P = 0.004; 397 ± 203 s pre-IC Sham vs. 355 ± 195 s post-IC Sham; P = 0.46). The results from this pilot study thus indicate that IC training has the potential to improve walking speed and paretic muscle fatigue resistance poststroke
Transorbital transnasal endoscopic combined approach to the anterior and middle skull base: a laboratory investigation
Orbital approaches provide significant trajectory to the skull base and are used with differently designed pathways. The aim of this study is to investigate the feasibility of a combined transorbital and transnasal approach to the anterior and middle cranial fossa. Cadaveric dissection of five silicon-injected heads was used. A total of 10 bilateral transorbital approaches and 5 extended endonasal approaches were performed. Identification of surgical landmarks, main anatomical structures, feasibility of a combined approach and reconstruction of the superior orbital defect were examined. Rod lens endoscope (with 0° and 45° lenses) and endoscopic instruments were used to complete the dissection. The transorbital approach showed good versatility and provides the surgeon with a direct route to the anterior and middle cranial fossa. The transorbital avascular plane showed no conflict with major nerves or vessels. Large exposure area from crista galli to the third ventricle was demonstrated with significant control of different neurovascular structures. A combined transorbital transnasal approach provides considerable value in terms of extent of exposure and free hand movement of the two surgeons, and allows better visualisation and control of the ventral skull base, thus overcoming the current surgical limits of a single approach. Combination of these two minimally invasive approaches should reduce overall morbidity. Clinical trials are needed to evaluate the virtual applications of this approach
Simulations of events for the LUX-ZEPLIN (LZ) dark matter experiment
The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1–2)×10−12 pb at a WIMP mass of 40 GeV/c2. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data
Forensic dentistry now and in the future
Forensic dentistry (odontology) deals with the examination, handling and presentation of dental evidence for the legal system. In the UK this work mainly involves criminal cases but in many other countries its remit also extends to civil litigation. There are four main aspects to forensic dentistry: single body identification, Disaster Victim Identification (DVI), age estimation and bite mark identification and analysis. This article provides a brief introduction to the topics and discusses potential future developments that aim to reduce the subjectivity in the analysis process and simplify presentation of evidence to non-dental parties.
CPD/Clinical Relevance: This article highlights ways that dental practitioners can assist legal investigations and, in particular, forensic dentists
Deciphering the complex three-way interaction between the non-integrin laminin receptor, galectin-3 and Neisseria meningitidis
The non-integrin laminin receptor (LAMR1/RPSA) and galectin-3 (Gal-3) are multi-functional host molecules with roles in diverse pathological processes, particularly of infectious or oncogenic origins. Using bimolecular fluorescence complementation and confocal imaging, we demonstrate that the two proteins homo- and heterodimerize, and that each isotype forms a distinct cell surface population. We present evidence that the 37 kDa form of LAMR1 (37LRP) is the precursor of the previously described 67 kDa laminin receptor (67LR), whereas the heterodimer represents an entity that is distinct from this molecule. Site-directed mutagenesis confirmed that the single cysteine (C173) of Gal-3 or lysine (K166) of LAMR1 are critical for heterodimerization. Recombinant Gal-3, expressed in normally Gal-3-deficient N2a cells, dimerized with endogenous LAMR1 and led to a significantly increased number of internalized bacteria (Neisseria meningitidis), confirming the role of Gal-3 in bacterial invasion. Contact-dependent cross-linking determined that, in common with LAMR1, Gal-3 binds the meningococcal secretin PilQ, in addition to the major pilin PilE. This study adds significant new mechanistic insights into the bacterial–host cell interaction by clarifying the nature, role and bacterial ligands of LAMR1 and Gal-3 isotypes during colonization
Emic and Etic Perspectives on HR Practice for Managing Human Resource Issues Affected by the Prevalence of Informal Networks in Arab Countries
Whilst research on Wasta has been improving in quantity and quality, there is still much more to know about the interactions between the different parties in Wasta transactions, the role of power in this process and how it impacts HR functions. As such, this research aims to address this gap by exploring the use of Wasta in human resources (HR) functions, drawing on 17 semi-structured interviews with HR, recruitment and line managers working in the Jordanian banking sector. This paper focuses on the roles of trust and power in the organizational transactions in which Wasta is positioned and identifies recruitment and selection (R&S) as one of the main human resource (HR) practices and procedures that are affected by Wasta. The findings shed light on the impact of Wasta on HRM practice on the micro and macro levels, highlighting the complex socio-economic needs for this practice which, whilst they might be beneficial on the micro level in terms of securing employment for job seekers and benefits for organizations in the Wasta exchange process, can also have some substantive negative outcomes in the forms of social and economic exclusion of others outside the Wasta network. By doing so, it develops the conceptualization beyond the often-simplistic view of Wasta as a negative (and sometimes positive) practice as viewed by previous research extending it to a practice that could have either impact on different stakeholder
Strategies for the production of long-acting therapeutics and efficient drug delivery for cancer treatment
Protein therapeutics play a significant role in treating many diseases. They, however, suffer from patient's proteases degradation and antibody neutralization which lead to short plasma half-lives. One of the ways to overcome these pitfalls is the frequent injection of the drug albeit at the cost of patient compliance which affects the quality of life of patients. There are several techniques available to extend the half-life of therapeutics. Two of the most common protocols are PEGylation and fusion with human serum albumin. These two techniques improve stability, reduce immunogenicity, and increase drug resistance to proteases. These factors lead to the reduction of injection frequency which increases patient compliance and improve quality of life. Both techniques have already been used in many FDA approved drugs. This review describes many technologies to produce long-acting drugs with the attention of PEGylation and the genetic fusion with human serum albumin. The report also discusses the latest modified therapeutics in the field and their application in cancer therapy. We compare the modification methods and discuss the pitfalls of these modified drugs
Recommended from our members
Projected sensitivity of the LUX-ZEPLIN experiment to the 0νββ decay of Xe 136
The LUX-ZEPLIN (LZ) experiment will enable a neutrinoless double β decay search in parallel to the main science goal of discovering dark matter particle interactions. We report the expected LZ sensitivity to Xe136 neutrinoless double β decay, taking advantage of the significant (>600 kg) Xe136 mass contained within the active volume of LZ without isotopic enrichment. After 1000 live-days, the median exclusion sensitivity to the half-life of Xe136 is projected to be 1.06×1026 years (90% confidence level), similar to existing constraints. We also report the expected sensitivity of a possible subsequent dedicated exposure using 90% enrichment with Xe136 at 1.06×1027 years
Perirenal Fat CT Radiomics-Based Survival Model for Upper Tract Urothelial Carcinoma:Integrating Texture Features with Clinical Predictors
Background: Upper tract urothelial carcinoma (UTUC) presents significant challenges in prognostication due to its rarity and complex anatomy. This study introduces a novel approach integrating perirenal fat (PRF) radiomics with clinical factors to enhance prognostic accuracy in UTUC. Methods: The study retrospectively analyzed 103 UTUC patients who underwent radical nephroureterectomy. PRF radiomics features were extracted from preoperative CT scans using a semi-automated segmentation method. Three prognostic models were developed: clinical, radiomics, and combined. Model performance was assessed using concordance index (C-index), time-dependent Area Under the Curve (AUC), and integrated Brier score. Results: The combined model demonstrated superior performance (C-index: 0.784, 95% CI: 0.707–0.861) compared to the radiomics (0.759, 95% CI: 0.678–0.840) and clinical (0.653, 95% CI: 0.547–0.759) models. Time-dependent AUC analysis revealed the radiomics model’s particular strength in short-term prognosis (12-month AUC: 0.9281), while the combined model excelled in long-term predictions (60-month AUC: 0.8403). Key PRF radiomics features showed stronger prognostic value than traditional clinical factors. Conclusions: Integration of PRF radiomics with clinical data significantly improves prognostic accuracy in UTUC. This approach offers a more nuanced analysis of the tumor microenvironment, potentially capturing early signs of tumor invasion not visible through conventional imaging. The semi-automated PRF segmentation method presents advantages in reproducibility and ease of use, facilitating potential clinical implementation
Evaluating the Predictive Capability of Radiomics Features of Perirenal Fat in Enhanced CT Images for Staging and Grading of UTUC Tumours Using Machine Learning
Background: Upper tract urothelial carcinoma (UTUC) often presents with aggressive behaviour, demanding accurate preoperative assessment to guide management. Radiomics-based approaches have shown promise in extracting quantitative features from imaging, yet few studies have explored whether perirenal fat (PRF) radiomics can augment tumour-only models. Methods: A retrospective cohort of 103 UTUC patients undergoing radical nephroureterectomy was analysed. Tumour regions of interest (ROI) and concentric PRF expansions (10–30 mm) were segmented from computed tomography (CT) scans. Radiomic features were extracted using PyRadiomics, filtered by correlation and intraclass correlation coefficients, and integrated with clinical variables (e.g., age, BMI, multifocality). Multiple machine learning models, including MLPClassifier and CatBoost, were evaluated via repeated cross-validation. Performance was assessed using the area under the ROC curve (AUC), sensitivity, specificity, F1-score, and DeLong tests. Results: The best tumour grade model (AUC = 0.961) merged tumour-derived features with a 10 mm PRF margin, exceeding PRF-only (AUC = 0.900) and tumour-only (AUC = 0.934) approaches. However, the improvement over tumour-only was not always statistically significant. For stage prediction, combining tumour and 15 mm PRF features yielded the top AUC of 0.852, surpassing the tumour-alone model (AUC = 0.802) and outperforming PRF-only (AUC ≤ 0.778). PRF features provided an additional predictive value for both grade and stage models. Conclusions: Integrating PRF radiomics with tumour-based analyses enhances predictive accuracy for UTUC grade and stage, suggesting that the tumour microenvironment contains complementary imaging cues. These findings, pending external validation, support the potential for radiomics-driven risk stratification and personalised treatment planning in UTUC
- …
