896 research outputs found
The presence of alpha-catenin in the VE-cadherin complex is required for efficient transendothelial migration of leukocytes
The majority of the leukocytes cross the endothelial lining of the vessels through cell-cell junctions. The junctional protein Vascular Endothelial (VE)-cadherin is transiently re-distributed from sites of cell-cell contacts during passage of leukocytes. VE-cadherin is part of a protein complex comprising p120-catenin and beta-catenin as intracellular partners. Beta-catenin connects VE-cadherin to alpha-catenin. This VE-cadherin-catenin complex is believed to dynamically control endothelial cell-cell junctions and to regulate the passage of leukocytes, although not much is known about the role of alpha- and beta-catenin during the process of transendothelial migration (TEM). In order to study the importance of the interaction between alpha- and beta-catenin in TEM, we used a cell-permeable version of the peptide encoding the binding site of alpha-catenin for beta-catenin (S27D). The data show that S27D interferes with the interaction between alpha- and beta-catenin and induces a reversible decrease in electrical resistance of the endothelial monolayer. In addition, S27D co-localized with beta-catenin at cell-cell junctions. Surprisingly, transmigration of neutrophils across endothelial monolayers was blocked in the presence of S27D. In conclusion, our results show for the first time that the association of alpha-catenin with the cadherin-catenin complex is required for efficient leukocyte TEM
Paradigm of biased PAR1 (protease-activated receptor-1) activation and inhibition in endothelial cells dissected by phosphoproteomics
Thrombin is the key serine protease of the coagulation cascade and mediates cellular responses by activation of PARs (protease-activated receptors). The predominant thrombin receptor is PAR1, and in endothelial cells (ECs), thrombin dynamically regulates a plethora of phosphorylation events. However, it has remained unclear whether thrombin signaling is exclusively mediated through PAR1. Furthermore, mechanistic insight into activation and inhibition of PAR1-mediated EC signaling is lacking. In addition, signaling networks of biased PAR1 activation after differential cleavage of the PAR1 N terminus have remained an unresolved issue. Here, we used a quantitative phosphoproteomics approach to show that classical and peptide activation of PAR1 induce highly similar signaling, that low thrombin concentrations initiate only limited phosphoregulation, and that the PAR1 inhibitors vorapaxar and parmodulin-2 demonstrate distinct antagonistic properties. Subsequent analysis of the thrombin-regulated phosphosites in the presence of PAR1 inhibitors revealed that biased activation of PAR1 is not solely linked to a specific G-protein downstream of PAR1. In addition, we showed that only the canonical thrombin PAR1 tethered ligand induces extensive early phosphoregulation in ECs. Our study provides detailed insight in the signaling mechanisms downstream of PAR1. Our data demonstrate that thrombin-induced EC phosphoregulation is mediated exclusively through PAR1, that thrombin and thrombin-tethered ligand peptide induce similar phosphoregulation, and that only canonical PAR1 cleavage by thrombin generates a tethered ligand that potently induces early signaling. Furthermore, platelet PAR1 inhibitors directly affect EC signaling, indicating that it will be a challenge to design a PAR1 antagonist that will target only those pathways responsible for tissue pathology
The spliceosome as target for anticancer treatment
The spliceosome is a ribonucleoprotein complex involved in RNA splicing, that is, the removal of non-coding introns from precursor messenger RNA. (Alternative) Splicing events may play an essential role in tumourigenesis. The recent discovery that the spliceosome is a target for novel compounds with anticancer activity opens up new therapeutic avenues
Variable number of tandem repeats in clinical strains of Haemophilus influenzae
An algorithm capable of identifying short repeat motifs was developed and
used to screen the whole genome sequence available for Haemophilus
influenzae, since some of these repeats have been shown to affect
bacterial virulence. Various di- to hexanucleotide repeats were
identified, confirming and extending previous findings on the existence of
variable-number-of-tandem-repeat loci (VNTRs). Repeats with units of 7 or
8 nucleotides were not encountered. For all of the 3- to 6-nucleotide
repeats in the H. influenzae chromosome, PCR tests capable of detecting
allelic polymorphisms were designed. Fourteen of 18 of the potential VNTRs
were indeed highly polymorphic when different strains were screened. Two
of the potential VNTRs appeared to be short and homogeneous in length;
another one may be specific for the H. influenzae Rd strain only. One of
the primer sets generated fingerprint-type DNA banding patterns. The
various repeat types differed with respect to intrinsic stability as well.
It was noted for separate colonies derived from a single clinical specimen
or strains passaged for several weeks on chocolate agar plates that the
lengths of the VNTRs did not change. When several strains from different
patients infected during an outbreak of lung disease were analyzed,
increased but limited variation was encountered in al
Architecture of the outer membrane of Escherichia coli III. Protein-Lipopolysaccharide complexes in intramembraneous particles
FWN – Publicaties zonder aanstelling Universiteit Leide
Lipoprotein signal peptidase of Streptococcus suis serotype 2
This paper reports the complete coding sequence for a proliprotein signal peptidase (SP-ase) of Streptococcus suis, Lsp. This is believed to be the first SP-ase described for S. suis. SP-ase II is involved in the removal of the signal peptide from glyceride-modified prolipoproteins. By using in vitro transcription/translation systems, it was shown that the lsp gene was transcribed in vitro. Functionality of Lsp in Escherichia coli was demonstrated by using an in vitro globomycin resistance assay, to show that expression of Lsp in E. coli increased the globomycin resistance. An isogenic mutant of S. suis serotype 2 unable to produce Lsp was constructed and shown to process lipoproteins incorrectly, including an S. suis homologue of the pneumococcal PsaA lipoprotein. Five piglets were inoculated with a mixture of both strains in an experimental infection, to determine the virulence of the mutant strain relative to that of the wild-type strain in a competitive challenge experiment. The data showed that both strains were equally virulent, indicating that the knockout mutant of lsp is not attenuated in vivo
- …