62 research outputs found

    A Mitogen-activated Protein Kinase cascade module, MKK3-MPK6 and MYC2, is involved in blue light-mediated seedling development in Arabidopsis

    Get PDF
    Mitogen-activated protein kinase (MAPK) pathways are involved in several signal transduction processes in eukaryotes. Light signal transduction pathways have been extensively studied in plants; however, the connection between MAPK and light signaling pathways is currently unknown. Here, we show that MKK3-MPK6 is activated by blue light in a MYC2-dependent manner. MPK6 physically interacts with and phosphorylates a basic helix-loop-helix transcription factor, MYC2, and is phosphorylated by a MAPK kinase, MKK3. Furthermore, MYC2 binds to the MPK6 promoter and regulates its expression in a feedback regulatory mechanism in blue light signaling. We present mutational and physiological studies that illustrate the function of the MKK3-MPK6-MYC2 module in Arabidopsis thaliana seedling development and provide a revised mechanistic view of photomorphogenesis

    MKKK20 works as an upstream triple-kinase of MKK3-MPK6-MYC2 module in Arabidopsis seedling development

    Get PDF
    The mitogen-activated protein kinase (MAPK) cascade is involved in several signal transduction processes in eukaryotes. Here, we report a mechanistic function of MAP kinase kinase kinase 20 (MKKK20) in light signal transduction pathways. We show that MKKK20 acts as a negative regulator of photomorphogenic growth at various wavelengths of light. MKKK20 not only regulates the expression of light signaling pathway regulatory genes but also gets regulated by the same pathway genes. The atmyc2 mkkk20 double mutant analysis shows that MYC2 works downstream to MKKK20 in the regulation of photomorphogenic growth. MYC2 directly binds to the promoter of MKKK20 to modulate its expression. The protein-protein interaction study indicates that MKKK20 physically interacts with MYC2, and this interaction likely suppresses the MYC2-mediated promotion of MKKK20 expression. Further, the protein phosphorylation studies demonstrate that MKKK20 works as the upstream kinase of MKK3-MPK6-MYC2 module in photomorphogenesis

    ROS mediated MAPK signaling in abiotic and biotic stress- striking similarities and differences

    Get PDF
    Plants encounter a number of environmental stresses throughout their life cycles, most of which activate mitogen activated protein kinase (MAPK) pathway. The MAPKs show crosstalks at several points but the activation and the final response is known to be specific for particular stimuli that in-turn activates specific set of downstream targets. Interestingly, reactive oxygen species (ROS) is an important and common messenger produced in various environmental stresses and is known to activate many of the MAPKs. ROS activates a similar MAPK in different environmental stimuli, showing different downstream targets with different and specific responses. In animals and yeast, the mechanism behind the specific activation of MAPK by different concentration and species of ROS is elaborated, but in plants this aspect is still unclear. This review mainly focuses on the aspect of specificity of ROS mediated MAPK activation. Attempts have been made to review the involvement of ROS in abiotic stress mediated MAPK signaling and how it differentiates with that of biotic stress

    Optimal Vibration Absorber With a Friction Damper

    No full text

    Early experience on peripheral vascular application of the vascular plugs

    Get PDF
    Background: Transcatheter closure of various congenital and acquired vascular malformations with Amplatzer Vascular plugs I and II has been established. Here we present our experience with device closure. Materials and methods: Between October 2006 and August 2012, nine (three males and six females) patients aged between 11 months and 62 years (mean age 19 years) underwent percutaneous device closure with AVP I and II vascular plugs for congenital and acquired arteriovenous malformation and cardiac diverticulum are presented here. Results: One case of coronary cameral fistula, four cases of pulmonary arteriovenous fistula, one case of large major aortopulmonary collaterals (in tetralogy of Fallot closed before intracardiac repair), one case of congenital cardiac diverticulum, one case of fistula between external carotid artery and internal jugular vein and one case of iatrogenic carotid jugular fistula were successfully closed with AVP I and II plugs. Overall in nine cases, 16 AVP I and II plugs were deployed to occlude feeding vessels and one cardiac diverticulum. The technical success rate was 100%. No major complications were observed. Conclusion: Amplatzer vascular plugs can be used successfully for closure of various congenital and acquired vascular malformations with good result
    corecore