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ROS mediated MAPK signaling in
abiotic and biotic stress- striking
similarities and differences
Siddhi K. Jalmi and Alok K. Sinha*

National Institute of Plant Genome Research, New Delhi, India

Plants encounter a number of environmental stresses throughout their life cycles, most
of which activate mitogen activated protein kinase (MAPK) pathway. The MAPKs show
crosstalks at several points but the activation and the final response is known to be
specific for particular stimuli that in-turn activates specific set of downstream targets.
Interestingly, reactive oxygen species (ROS) is an important and common messenger
produced in various environmental stresses and is known to activate many of the
MAPKs. ROS activates a similar MAPK in different environmental stimuli, showing
different downstream targets with different and specific responses. In animals and yeast,
the mechanism behind the specific activation of MAPK by different concentration and
species of ROS is elaborated, but in plants this aspect is still unclear. This review mainly
focuses on the aspect of specificity of ROS mediated MAPK activation. Attempts have
been made to review the involvement of ROS in abiotic stress mediated MAPK signaling
and how it differentiates with that of biotic stress.
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Introduction

Plants show complex signaling network to transduce any external stimuli to the inside of the cell
for an appropriate cellular arrangement giving rise to a particular response. The response is such
that it helps the plant to cop up with environmental stresses that it experiences throughout its life.
To exhibit a particular response, it is important for the plant to perceive the stimulus and transmit
it into the nucleus of the plant cell. The perception is specifically done by cell wall receptors which
then by several mechanisms activate internal signaling components. One of the most important
changes that occur upon perception of external stimuli is change in redox state. Plants come
across two types of stresses, abiotic and biotic. Change in redox state is a common outcome of
both the stresses. This change in redox state occurs due to the production and accumulation of
reactive oxygen species (ROS) in two powerhouses of plants, i.e., chloroplast and mitochondria
(Apel and Hirt, 2004; Mittler et al., 2004). ROS are important secondary messengers that are
poised at the core of signaling pathway in plants maintaining normal metabolic fluxes and different
cellular functions (Figure 1). Besides chloroplast and mitochondria these are mainly produced
by cell wall NADPH oxidases, peroxidases, while they are scavenged by numerous scavenging
enzymes (Apel and Hirt, 2004; Nurnberger et al., 2004). The level of ROS determines whether it
will be defensive or destructive molecule and its level is maintained through coordination between
ROS production and turnover (Mittler et al., 2004; Miller et al., 2007). Function of ROS is also
governed by its site of production, site of action and duration of action. When environmental stress
becomes detrimental to the plant, it activates genetically controlled process called programmed
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FIGURE 1 | Schematic representation of reactive oxygen species (ROS) regulation of mitogen activated protein kinases (MAPK) signaling pathway in
biotic and abiotc stresses. ROS is a common messenger produced in response to both the stress response, acting either up- or downstream of MAPK cascade.
Despite being a common regulator of MAPKs signaling the response shown by plant is different in both the stresses. Purple and green color represents biotic and
abiotc stress, respectively.

cell death to specifically eliminate damaged tissues. In this process
plants produce excess of ROS which helps in destroying stressed
and damaged tissue. Signal transdcution pathways regulates the
level of ROS production thereby protecting the plants from
adverse effect of ROS (Bowler and Fluhr, 2000; Mittler et al.,
2004).

One of the most important signaling cascades working in
transmitting stress related stimuli is mitogen activated protein
kinase (MAPK) cascade. MAPKs are highly conserved signaling
pathway, play major role in signal transduction of diverse stress
responses even in combination of many stresses. MAPK cascade
consist of three tier components MAPKKKs, MAPKKs, and
MAPKs carrying out phosphorylation reaction from upstream
receptor to downstream target (Hamel et al., 2006). MAPKs are
not only known to be activated by perception of ligand but are
also activated by these ROS molecules. These phosphorylation
cascades are found to work either upstream or downstream of
ROS (Asai et al., 2002; Figure 1). MKK4-MPK3/6 module is
known to play role in ROS production by acting upstream of
NADPH oxidase and other way round H2O2 produced is known
to activate MPK3 and MPK6 (Kovtun et al., 2000).

The manner in which plants respond to environmental stress
depends on the type of stress and the outcome shown is mainly
specific to particular stress. Some of the mechanisms like ROS
production are common factor or outcome of both abiotic and

biotic stresses whereas other mechanisms like activation of signal
transduction networks, downstream activation of transcription
factors and gene modulation becomes specific for specific stimuli
(Figure 1). Question lies behind the specific activation of
signaling cascade by upstream secondary messengers like ROS.

Environmental stresses encountered by plants are known to
activate MAPK pathway. The MAPK activation is mostly specific
but at times crosstalks are also reported in this signaling pathway
(Sinha et al., 2011). Interestingly ROS which is produced by
various environmental stresses is known to activate MAPKs
giving a specific response. But the mechanism behind the specific
activation of MAPK cascade by ROS is still unclear. This review
mainly focuses on the aspect of specificity of ROS mediated
MAPK activation. Attempts have been made to review the
involvement of ROS in abiotic stress mediated MAPK signaling
and how it delineates from that of biotic stress. In this review an
update is provided on ROS regulated MAPK signaling and how it
is differentially regulated by ROS produced in response to abiotic
and biotic environmental stresses.

ROS Production and its Turnover

Reactive oxygen species is being continuously produced in
cell during normal cellular processes by aerobic respiration in
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chloroplast, mitochondria, peroxisomes, etc., ROS produced is
counteracted by scavenging enzymes to maintain its level. Apart
from its production from normal metabolic activities, majority
of apoplastic ROS is produced by NADPH oxidase, (called as
respiratory burst oxidase RBO in mammals) as first studied in
mammalian ROS production. Cell wall peroxidases, germin like
oxalate oxidases and amino oxidase also are involved in ROS
production (Doke, 1983; Apel and Hirt, 2004; Nurnberger et al.,
2004). NADPH oxidases in plants are named as Respiratory Burst
Oxidase Homologs (RBOH) after their mammalian analogs.
The first studied NADPH oxidase gene in plant was rice
OsrbohA (Groom et al., 1996). Plants show different isoforms
of Rboh genes. There exist ten Rboh genes in Arabidopsis from
AtrbohA–AtrbohJ (Torres et al., 1998). Rboh genes were first
identified to generate ROS in response to biotic stress. Study
on mutant and antisense lines of Rboh genes AtrbohD and
AtrbohF, gave the proof of production of oxidative burst by
RBOH in pathogen infection (Torres et al., 2002). ROS generated
by RBOH also impose their role in abiotic signaling and same
genes are involved in ROS production in this signaling. The
same Rboh isoform is able to carry out different ROS dependent
function in response to different stimuli and in different cellular
context (Table 1). The difference in outcome might exist due
to complex interaction between different Rboh isoforms and
with other signaling components (Foreman et al., 2003; Kwak
et al., 2003; Kubo et al., 2005; Miller et al., 2009; Müller et al.,
2009).

Plant response to a particular environmental stress also
depends on level of ROS which is maintained by a balance
between its production and turnover. This balance of ROS level
is required for performing its dual role of acting as a defensive
molecule in signaling pathway or a destructive molecule. There
are total 152 genes involved in regulating ROS production
and turnover (Mittler et al., 2004). Different antioxidants like
ascorbate, tocopherol, glutathione, etc., play an important role in
maintaining ROS level. Major enzymes involved in maintaining
ROS homeostasis are ascorbate peroxidase (APX1), catalase
(CAT1 & 2), thylakoid aperoxidase (tAPX), mitochondrial
oxidase (AOX) and Cu-Zn- superoxide dismutase 2 (CSD2).
Studies on mutants lacking these enzymes have revealed a strong
link between biological processes, stress responses and ROS
(Rizhsky et al., 2002; Pnueli et al., 2003; Miller et al., 2007).

MAPKs Cascade Activation and ROS
Generation- What Comes First?

Sensing of ROS by plant cell is done either by receptors, ROS
sensitive transcription factors like heat shock factors, NPR1 or
by ROS mediated inhibition of phosphatase (Mittler et al., 2004;
Miller and Mittler, 2006). Once the ROS are sensed it turns
on signal transduction pathway further causing differential gene
expression. It can activate signal transduction pathway within the
cytoplasm of cell or in the organelles where it is being produced.
ROS are considered to activate signal transduction pathways in
linear fashion but at times it can also work at different levels in a
particular pathway. It is also likely that ROS mediated signaling

pathway can act on ROS production to maintain its homeostasis
in case if the ROS levels are high.

Upon perception of variety of stress stimuli MAPK cascades
are activated. MAPK ultimately phosphorylate and activate
several downstream targets like transcription factor, other
kinases, phosphatases, and cytoskeleton associated proteins
(Hamel et al., 2006; Rodriguez et al., 2010; Sinha et al., 2011).
During environmental stimuli MAPKs acts on RBOH thus
regulating its activity and ROS production (Asai et al., 2008). Two
MAPK cascades NPK1-MEK1-NTF6 and MEK2-SIPK, known
till now are found to regulate RBOHmediated oxidative burst and
ROS produced is involved in mediating disease resistance (Asai
et al., 2008). Recent study reported that MEKK1-MKK5-MPK6
mediates salt induced expression of iron superoxide dismutase
gene further inducing ROS production (Xing et al., 2015). These
studies suggest that ROS acts downstream of MAPK pathway.
However, ROS an important messenger produced in various
stress responses are well known to exert their effect on MAPKs,
thus acting upstream of MAPKs. Upon pathogen attack ROS
being produced activates Arabidopsis MPK3, MPK4, and MPK6.
MAPK Cascade working in Arabidopsis in response to pathogen
attack downstream of ROS is MEKK1-MKK4/5-MPK3/6 (Asai
et al., 2002). Another MAPK cascade MEKK1-MKK2-MPK4/6 is
known to work downstream of ROS participating in both abiotic
and biotic stress signaling (Teige et al., 2004; Pitzschke et al.,
2009; Furuya et al., 2014). MAPK cascades activated by ROS in

TABLE 1 | Involvement of different Rboh genes isoforms in different
environmental stresses and plant development.

Rboh genes Function Reference

AtrbohA − −
AtrbohB Role in post seed ripening Müller et al., 2009

AtrbohC Root hair formation;
mechanosensing

Foreman et al., 2003;
Monshausen et al.,
2009.

AtrbohD Systemic signaling in response
to diverse stimuli like pest
attack, mechanical wounding,
heat, cold, high light intensity
and salinity.
Accumulation of reactive
oxygen species (ROS) in plant
defense; ROS dependent ABA
signaling in Arabidopsis.

Torres et al., 2002;
Kwak et al., 2003;
Miller et al., 2009;
Pogány et al., 2009.

AtrbohE Differentially expressed during
differentiation of mesophyll cells
to tracheary elements.

Kubo et al., 2005

AtrbohF Accumulation of ROS in plant
defense; ROS dependent ABA
signaling in Arabidopsis.

Miller et al., 2009

AtrbohG − −
AtrbohH Expressed in pollen and

involved in pollen tube
formation.

Potocký et al., 2007

AtrbohI − −
AtrbohJ Expressed in pollen and

involved in pollen tube
formation.

Potocký et al., 2007
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particular stimuli are also known to regulate ROS production
by feedback mechanism. Some studies suggest MAPK cascades
to exert positive feedback regulation on ROS production.
A study in maize revealed that ABA activates 46 KDa MAPK
which acts downstream of H2O2 and further positively regulate
RBOH for H2O2 production (Lin et al., 2009). Another cascade
positively regulating ROS production is OXI1-MPK6 which is
itself activated by ROS. OXI1 (Oxidative signal-induced kinase 1)
is a serine/threonine MAPKKK (Asai et al., 2008). MEKK1-
MKK4-MPK3/6 is known to act upstream of NADPH oxidase
stimulating ROS production in pathogen attack and H2O2
produced is in turn known to activate MPK3 and MPK6 (Kovtun
et al., 2000). Besides positive regulation of ROS production,
MAPK cascade, NDPK2-MPK3/6 is known to negatively regulate
ROS production, further giving tolerance against cold, salt, and
oxidative stress (Moon et al., 2003). From these data it is clear
that both ROS and MAPKs regulate each other’s activities but
the mechanisms of their connections and basis of positive and
negative feedback regulation still remains elusive.

ROS Mediated Signaling Crosstalks
among Various Environmental Stresses

Mitogen activated protein kinases are important regulators of
diverse cellular processes and stress responses. As an important
player they show crosstalks at several points in signaling pathways
in response to abiotic and biotic stresses that include ROS
signaling. It is always noted that a single MAPK cascade is
involved in two or more different stress responses. Also an
upstream MAPK activated by a response can activate different
downstream targets (Andreasson and Ellis, 2010). ROS is a
common factor produced in abiotic as well as biotic stress
and there are still not enough reports to clear how ROS
activated MAPKs behave differently in different stress response
(Figure 2). Below are some examples of ROS mediated activation
of MAPK signaling cascades in abiotic and other environmental
stresses.

In Arabidopsis, a MAPKKK, MEKK1 is activated upon abiotic
factors like salt, cold, wound, and drought and biotic factors
like bacterial and fungal elicitors (Asai et al., 2002; Teige et al.,
2004; Pitzschke et al., 2009; Furuya et al., 2014; Xing et al.,
2015). It is known that ROS which is being produced in these
stimuli causes the activation of MEKK1. In abiotic stimuli
MEKK1 activates MKK2-MPK4/6 module while in biotic stress
it activates MKK4/5-MPK3/6-VIP1/ACS6 module (Asai et al.,
2002; Meng and Zhang, 2013) (Figure 2A). Later, MEKK1-
MKK1/2-MPK4 module acting upstream of MKS1/WRKY33
was also known to work in mediating pathogen related cues
(Huang et al., 2000; Kong et al., 2012; Figure 2A). MEKK1 acting
upstream of WRKY53 also showed role in plant senescence
(Miao et al., 2008). ROS produced during different environmental
stresses like ozone, heavy metal, biotic stress, and ABA treatment
causes activation of MPK3 andMPK6 further mediating different
responses (Droillard et al., 2002; Lu et al., 2002; Ahlfors et al.,
2004; Liu and Zhang, 2004; Yoo et al., 2008). OXI1 is known to
have different targets and show diversified activities which might

suggest the crosstalk of OXI1 with other signaling pathways
(Howden et al., 2011). MPK3 and MPK6 acting downstream of
OXI1 mediates two different biological responses, stimulating
resistance toward fungal pathogen and also play role in root
development (Rentel et al., 2004; Hirt et al., 2011; Howden et al.,
2011) (Figure 2B). Apart from OXI1, ANP1, and NDPK2 acts
upstream of MPK3 and MPK6 and thus imparting tolerance to
abiotic stresses like heat, cold, and salt stress (Kovtun et al., 2000).

Besides occurance of these signaling crosstalks in model plant
Arabidopsis, it is also observed in crop plant rice. H2O2 is
known to activate MPK3 and MPK6 in rice and gets activated by
upstream kinaseMKK6. This cascade show involvement in giving
resistance to fungal pathogen as well as show tolerance to abiotic
stresses, like heavy metal, salt, cold, and UV rays (Ding et al.,
2009; Rao et al., 2010; Kumar and Sinha, 2013; Sheikh et al., 2013;
Singh and Jwa, 2013; Wankhede et al., 2013a,b) (Figure 2C). The
question that naturally comes to mind is what decides a same
pathway to act in two different processes.

Above examples on ROS mediated crosstalks among MAPKs
suggest that ROS produced in different environmental stresses
mediates activation of similar MAPKs but the interaction within
MAPKs and the final response toward these stresses becomes
fundamentally different. At first point the differences comes
from the ability of MAPKs to interact with different downstream
targets. In this the scaffolding proteins also play a major role. But
it also seems like ROS imparts an important role as messengers
encoding total information for activating different responses.

ROS – a Key Player in Stress Signaling
but What Determines its Specificity?

The manner in which plant responds to any environmental
stress depends on the type of stress and the outcome shown is
mainly specific to particular stress. ROS is a common factor to
both abiotic and biotic stress. Whereas, other mechanisms like
activation of components in signal transduction, transcription
factors becomes specific for a stress. In above mentioned studies,
we saw ROS mediated activation of MAPK cascades in both
biotic and abiotic stresses. The cues from different ROSmolecules
activating different pathways can be integrated or can activate
a specific response to a single ROS molecule. MAPK pathways
show convergence at several points in signaling even though
activated by single messenger produced in different stresses.
Beside an important role of scaffolding proteins, different ROS
species also play an important role in making this difference
(Torres et al., 2002; Kwak et al., 2003; Yoshioka, 2004; Miller
et al., 2009). Reports suggests that the specificity of response
in each stress can be due to identity of ROS species produced
by different Rboh isoforms, their level, site of production and
action, diffusibility and half life (Bhattacharjee, 2010; Tripathy
and Oelmüller, 2012).

Plant show 10 isoforms of RBOH genes involved in producing
different species of ROS and thus behaving differentially in
various environmental cues (Table 1). RBOH in plants has
FAD and NADPH binding motifs at C-terminal and unlike
that of mammalian homolog has two Ca+2 binding motifs and
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FIGURE 2 | Response of MAPK cascades activated by ROS in biotic and abiotic stresses. (A) MEKK1 is a common MAPKKK activated by ROS produced in
both biotic and abiotic stress, activates different downstream components of MAPK cascade in Arabidopsis. (B) ROS activated OXI1 mediates two different
responses by activating MPK3 and MPK6 in Arabidopsis. (C) ROS generated by biotic and abiotic stress mediates different responses through activation of MKK6
and MPK3/MPK6 in rice. Purple and green color represents biotic and abiotc stress, respectively.

phosphorylation target sites at N-terminal region. It is with the
help of these motifs the activity of RBOH is regulated (Oda et al.,
2008). The mechanism of its regulation includes phosphorylation
by various signaling molecules like CDPKs, MAPKs, etc., (Lin
et al., 2009). Regulation of RBOH dependent ROS production is
also done with the help of amino acid residues motifs present in
it. Phosphatidic acid (PA) is one of the main factors necessary

for abscisic acid induced ROS production in stomatal cells.
PA binding motifs present in RBOHD, i.e., Arginine residues
at 149, 150, 156, and 157 are required for ROS production
and closure of stomata (Zhang et al., 2009). Whereas RBOHF
which is also involved in ABA dependent stomatal closure is
regulated by phosphorylation of Serine 13 and Serine 174 by
OPEN STOMATA 1 (OST1) (Sirichandra et al., 2009). OsRac1
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involved in pathogen defense positively regulates RBOHB activity
by binding to N-terminal region of RBOHB containing EF hand
motifs. OsRac1 has two different forms having role in two
different processes, one involved in ROS production and other in
suppression of defense responses (Wong et al., 2007). This shows
first step where RBOH induced ROS production is regulated
in which different amino acid residues and motifs are involved
in ROS production in response to different environmental
responses. In addition, different RBOH homologs either single
or in combination work in different stimuli giving a specific
response.

Perception of different ROS species by different mechanism
is still not well known and this can also explain the specific
activation of downstream signal transduction by ROS in different
environmental stimuli. Different locations of ROS production,
different perception mechanisms and therefore different targets
talks about the specificity in its response. The study on different
mechanisms of action, half life and migration of different ROS
species has already been carried out. The properties of most
important ROS species produced in plant stress are given in
Table 2.

The question behind the specific activation of downstream
signaling components by ROS, differentially in abiotic and biotic
stresses giving a specific response against a particular stress
is still an enigma. The mechanism behind the specificity of
MAPK activation by ROS is still elusive in plants, however,
their yeast and mammalian counterparts have provided few
mechanisms behind this aspect. Yeast MAPK Sty1 (Spc1, Phh1)
orthologs of mammalian p38 and JNK families of MAPK play
an important role in cell cycle progression and is activated
in response to numerous stresses like heat, oxidative, UV,
osmotic stress, and nutrient limitation (Degols and Russell,
1997). ATF transcription factor is among key substrate of Sty1
kinase. In oxidative stress conditions Sty1 not only increases
phosphorylation of Atf1 but also increases its mRNA stability.
Sty1 induces expression of subsets of genes in response to
specific stimuli and different sets of genes are being induced
by Sty1 in different concentrations of same stimuli. Low levels
of H2O2 activates Sty1 to induce AP1 (activator protein 1) like
transcription factor, whereas higher levels of H2O2 activates
Sty1 to induce Atf1 transcription factor (Chen et al., 2008)

(Figure 3). The difference in the downstream activation of Sty1
substrates even in response to same type of stimuli is due to H2O2
induced reversible oxidation of Cysteine residues of Sty1. Day
and Veal (2010), suggested that oxidation of two Sty1 MAPKKK
Cysteine residues Cys-153 and Cys-158 by H2O2 are essential
for specific transcriptional activation of Atf1 transcription factor.
These residues are important for hydrogen peroxide-induced
gene expression and Atf1 mediated oxidative stress resistance
but not for other functions of Sty1 (Day and Veal, 2010)
(Figure 3).

Apart from the direct regulation of MAPKs by ROS, they
also exert their effect indirectly through the activities of protein
phosphatases and other kinases. Phosphatases are important
regulators inMAPK signaling maintaining the activity of MAPKs
at various points. Based on the MAPK phosphorylation sites,
i.e., serine, threonine and tyrosine, phosphatases present are
tyrosine phosphatases and serine/threonine phosphatases. Work
carried out by scientific groups on protein tyrosine phosphatases
(PTP) have suggested that reduced cysteine residue in the
catalytic domain is essential for catalytic activity in plants (Gupta
et al., 1998; Xu et al., 1998). A study revealed redox dependent
regulation of PTP in oxidative stress. This study suggested
that cysteine residues are oxidized by H2O2 in order to make
PTP inactive and thus ultimately regulating MAPK signaling
pathway (Blanchetot et al., 2002; Gupta and Luan, 2003). Another
study in mice has put forward the possible mechanism in
which age associated formation of ROS activates p38 MAPK
pathway. Activation of p38 MAPK is done by ROS induced
oxidation of thioredoxin and its release from the complex of
ASK1 (apoptosis stimulating kinase 1). Reduced thioredoxin
bound to ASK1 inhibits its activity to further activate p38 MAPK.
The balance of free and bound ASK1 regulates the level of
p38 MAPK components and their activity. This study suggests
ROS mediated activation of p38 MAPK through unbound ASK1
and oxidation of thioredoxin (Hsieh and Papaconstantinou,
2006).

This exemplify that different types of ROS and different levels
of ROS can react with different amino acid residues in protein
and can give rise to different modified products, thus possibly
explaining how ROS species can induce different sets of responses
via the similar signaling pathway.

TABLE 2 | Properties and mode of action of ROS species on proteins.

ROS species Source Migration
distance

Half life Reaction with
proteins residues

Reference

Hydrogen peroxide
(H2O2 )

NADPH oxidases and cell wall
peroxidise (membrane),
Chloroplast, Mitochondria,
peroxisomes

1 µm 1 ms Cystein residues Miller et al., 2009;
Bhattacharjee, 2010

Superoxide (O−
2 ) Membrane, chloroplast,

Mitochondria
30 nm 1–4 µs Fe-centers Miller et al., 2009;

Bhattacharjee, 2010

Hydroxyl radical (OH− ) Membrane, chloroplast,
Mitochondria

1 nm 1 µs Not known Miller et al., 2009;
Bhattacharjee, 2010

Singlet oxygen (O2 ) Membrane, chloroplast,
Mitochondria

30 nm 1–4 µs Tryptophan, Histidine,
Tyrosine, Methionine,
Cysteine

Miller et al., 2009
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FIGURE 3 | Regulation of Yeast MAPK Sty1 (orthologs of mammalian p38 and JNK) by different levels of ROS. Sty1 induces the expression of two
different transcription factors depending on its activation by different levels of H2O2. Low levels of H2O2 activates Sty1 to induce AP1 (activator protein 1) like
transcription factor, whereas higher levels of H2O2 activates Sty1 to induce Atf1 transcription factor. The difference in the activation of Sty1 substrates is due to ROS
induced oxidation of different Cysteine residues of Sty1. Oxidation of Cys-153 and Cys-158 by H2O2 is essential for specific induction of Atf1 transcription factor.

Controversies about ROS Dependent
MAPK Activation

Earlier studies in Arabidopsis suggested MPK3 and MPK6 to
work upstream of AtRBOH-D ROS production and H2O2
produced was in turn known to activate MPK3 and MPK6
(Kovtun et al., 2000; Asai et al., 2008). However, a recent
report suggests that AtRBOH-D dependent ROS production and
MPK3/MPK6 activation are two independent events in plant
immunity. It was studied usingAtrbohmutant that flg22 triggered
ROS production was blocked whereas MPK3/MPK6 activation
did not get affected. It was also reported that pretreatment
with SA enhance ROS production independently of MPK3/6
activation (Xu et al., 2014).

Conclusion

Mitogen activated protein kinases are important regulators of
diverse cellular processes and stress responses, showing crosstalks
at several points in signaling. Single MAPK cascade is involved in
two or more different stress responses. Also an upstream MAPK
activated by multiple responses show different downstream
targets and thus different response. ROS is a common messenger

produced in abiotic as well as biotic stress activating MAPK
pathways and it is still not clear in plant how ROS activated
MAPKs behave differently in different stress response. Also ROS
andMAPKs show feedback loop to regulate each other’s activities
but the mechanisms and basis of positive and negative feedback
regulation still remains elusive.

On the basis of the information available in the literature,
it becomes clear that the ROS by itself has ability to regulate
the downstream signaling pathway components and to impart
a specific response toward a particular stress. It can activate a
similar MAPK cascade in different stresses and can exert different
responses accordingly. It is understood that the regulatory
mechanisms of MAPKs by ROS are more elaborated in yeast
and mammals, whereas in plants better understanding of the
regulatory functions of ROS and MAPK cascades is required.
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