6,454 research outputs found

    Disappointing model for ultrahigh-energy cosmic rays

    Full text link
    Data of Pierre Auger Observatory show a proton-dominated chemical composition of ultrahigh-energy cosmic rays spectrum at (1 - 3) EeV and a steadily heavier composition with energy increasing. In order to explain this feature we assume that (1 - 3) EeV protons are extragalactic and derive their maximum acceleration energy, E_p^{max} \simeq 4 EeV, compatible with both the spectrum and the composition. We also assume the rigidity-dependent acceleration mechanism of heavier nuclei, E_A^{max} = Z x E_p^{max}. The proposed model has rather disappointing consequences: i) no pion photo-production on CMB photons in extragalactic space and hence ii) no high-energy cosmogenic neutrino fluxes; iii) no GZK-cutoff in the spectrum; iv) no correlation with nearby sources due to nuclei deflection in the galactic magnetic fields up to highest energies.Comment: 4 pages, 7 figures, the talk presented by A. Gazizov at NPA5 Conference, April 3-8, 2011, Eilat, Israe

    Ultra High Energy Cosmic Rays: Anisotropies and Spectrum

    Full text link
    The recent results of the Pierre Auger Observatory on the possible correlation of Ultra High Energy Cosmic Rays events and several nearby discrete sources could be the starting point of a new era with charged particles astronomy. In this paper we introduce a simple model to determine the effects of any local distribution of sources on the expected flux. We consider two populations of sources: faraway sources uniformly distributed and local point sources. We study the effects on the expected flux of the local distribution of sources, referring also to the set of astrophysical objects whose correlation with the Auger events is experimentally claimed.Comment: 17 pages, 13 eps figures, version accepted for publication in Astroparticle Physic

    Propagation of UHECRs in cosmological backgrounds: some results from SimProp

    Full text link
    Ultra-High-Energy Cosmic Ray (UHECR) nuclei propagating in cosmological radiation backgrounds produce secondary particles detectable at Earth. SimProp is a one dimensional code for extragalactic propagation of UHECR nuclei, inspired by the kinetic approach of Aloisio et al. As in this approach, only a subset of nuclei and nuclear channels are used as representative. We discuss the validation of the code and present applications to UHECR experimental results. In particular we present the expected fluxes of neutrinos produced in some astrophysical scenario.Comment: Poster presented by A. Di Matteo at the 33rd International Cosmic Ray Conference, Rio De Janeiro (Brasil) July 2-9 201

    Cosmogenic neutrinos and ultra-high energy cosmic ray models

    Full text link
    We use an updated version of {\it SimProp}, a Monte Carlo simulation scheme for the propagation of ultra-high energy cosmic rays, to compute cosmogenic neutrino fluxes expected on Earth in various scenarios. These fluxes are compared with the newly detected IceCube events at PeV energies and with recent experimental limits at EeV energies of the Pierre Auger Observatory. This comparison allows us to draw some interesting conclusions about the source models for ultra-high energy cosmic rays. We will show how the available experimental observations are almost at the level of constraining such models, mainly in terms of the injected chemical composition and cosmological evolution of sources. The results presented here will also be important in the evaluation of the discovery capabilities of the future planned ultra-high energy cosmic ray and neutrino observatories.Comment: 15 pages, 8 figures, some reference added, version accepted for publication in JCA

    SU(2) Lattice Gauge Theory at Nonzero Chemical Potential and Temperature

    Get PDF
    SU(2) lattice gauge theory with four flavors of quarks is simulated at nonzero chemical potential mu and temperature T and the results are compared to the predictions of Effective Lagrangians. Simulations on 16^4 lattices indicate that at zero T the theory experiences a second order phase transition to a diquark condensate state which is well described by mean field theory. Nonzero T and mu are studied on 12^3 times 6 lattices. For low T, increasing mu takes the system through a line of second order phase transitions to a diquark condensed phase. Increasing T at high mu, the system passes through a line of first order transitions from the diquark phase to the quark-gluon plasma phase.Comment: Lattice2002(nonzerot), 3 pages, 3 figure

    Detection of GRB signals with Fluorescence Detectors

    Full text link
    Gamma Ray Bursts are being searched in many ground based experiments detecting the high energy component (GeV ÷\div TeV energy range) of the photon bursts. In this paper, Fluorescence Detectors are considered as possible candidate devices for these searches. It is shown that the GRB photons induce fluorescence emission of UV photons on a wide range of their spectrum. The induced fluorescence flux is dominated by GRB photons from 0.1 to about 100 MeV and, once the extinction through the atmosphere is taken into account, it is distributed over a wide angular region. This flux can be detected through a monitor of the diffuse photon flux, provided that its maximum value exceeds a threshold value, that is primarily determined by the sky brightness above the detector. The feasibility of this search and the expected rates are discussed on the basis of the current GRB observations and the existing fluorescence detectors.Comment: 16 pages 9 eps figure

    Particle and Antiparticle sectors in DSR1 and kappa-Minkowski space-time

    Full text link
    In this paper we explore the problem of antiparticles in DSR1 and κ\kappa-Minkowski space-time following three different approaches inspired by the Lorentz invariant case: a) the dispersion relation, b) the Dirac equation in space-time and c) the Dirac equation in momentum space. We find that it is possible to define a map SdsrS_{dsr} which gives the antiparticle sector from the negative frequency solutions of the wave equation. In κ\kappa-Poincar\'e, the corresponding map SkpS_{kp} is the antipodal mapping, which is different from SdsrS_{dsr}. The difference is related to the composition law, which is crucial to define the multiparticle sector of the theory. This discussion permits to show that the energy of the antiparticle in DSR is the positive root of the dispersion relation, which is consistent with phenomenological approaches.Comment: 15 pages, no figures, some references added, typos correcte

    Diffusive propagation of UHECR and the propagation theorem

    Full text link
    We present a detailed analytical study of the propagation of ultra high energy (UHE) particles in extragalactic magnetic fields. The crucial parameter which affects the diffuse spectrum is the separation between sources. In the case of a uniform distribution of sources with a separation between them much smaller than all characteristic propagation lengths, the diffuse spectrum of UHE particles has a {\em universal} form, independent of the mode of propagation. This statement has a status of theorem. The proof is obtained using the particle number conservation during propagation, and also using the kinetic equation for the propagation of UHE particles. This theorem can be also proved with the help of the diffusion equation. In particular, it is shown numerically, how the diffuse fluxes converge to this universal spectrum, when the separation between sources diminishes. We study also the analytic solution of the diffusion equation in weak and strong magnetic fields with energy losses taken into account. In the case of strong magnetic fields and for a separation between sources large enough, the GZK cutoff can practically disappear, as it has been found early in numerical simulations. In practice, however, the source luminosities required are too large for this possibility.Comment: 16 pages, 13 eps figures, discussion of the absence of the GZK cut-off in strong magnetic field added, a misprint in figure 6 corrected, version accepted for publication in Ap
    corecore