124 research outputs found

    Why We Still Need To Speak About Sex Differences and Sex Hormones in Pain

    Get PDF
    In the world of pain, we must always consider the presence of gender. In nociception, as well as in pain, women are different from men in many, if not all, aspects of the system. Nociception is the sum of several events that occur from the periphery to the CNS, and there is much evidence that female nociception differs from male nociception. Moreover, it has to be considered that pain results from a male or a female cortex. Genetic, anatomical, physiological, hormonal, psychological, and social factors have been considered to explain the differences present at both levels. Notwithstanding all the evidence, it is still difficult to observe the application of this knowledge to the treatment of pain. Drugs are still given per kilogram, and clinical studies, albeit including women, often mix data from both sexes. Moreover, reports on these studies often fail to mention the women's age and reproductive status, i.e., sex hormones. Hormone levels vary from hour to hour, from day to day, and, as repeatedly confirmed, are affected by several pain killers commonly used in pain therapy. All the data confirm the urgent need to include sex differences and sex hormones among the key factors that play an important role in pain and pain treatment

    Testosterone-induced effects on lipids and inflammation

    Get PDF
    Chronic pain has to be considered in all respects a debilitating disease and 10-20% of the world's adult population is affected by this disease. In the most general terms, pain is symptomatic of some form of dysfunction and (often) the resulting inflammatory processes in the body. In the study of pain, great attention has been paid to the possible involvement of gonadal hormones, especially in recent years. In particular, testosterone, the main androgen, is thought to play a beneficial, protective role in the body. Other important elements to be related to pain, inflammation, and hormones are lipids, heterogenic molecules whose altered metabolism is often accompanied by the release of interleukins, and lipid-derived proinflammatory mediators. Here we report data on interactions often not considered in chronic pain mechanisms

    GONADAL HORMONES, WOMEN AND PAIN

    Get PDF
    n/

    Serum Metabolomics and Proteomics to Study the Antihypertensive Effect of Protein Extracts from Tenebrio molitor

    Get PDF
    Hypertension is the leading risk factor for premature death worldwide and significantly contributes to the development of all major cardiovascular disease events. The management of high blood pressure includes lifestyle changes and treatment with antihypertensive drugs. Recently, it was demonstrated that a diet supplemented with Tenebrio molitor (TM) extracts is useful in the management of numerous pathologies, including hypertension. This study is aimed at unveiling the underlying mechanism and the molecular targets of intervention of TM dietary supplementation in hypertension treatment by means of proteomics and metabolomics techniques based on liquid chromatography coupled with high-resolution mass spectrometry. We demonstrate that serum proteome and metabolome of spontaneously hypertensive rats are severely altered with respect to their normotensive counterparts. Additionally, our results reveal that a diet enriched with TM extracts restores the expression of 15 metabolites and 17 proteins mainly involved in biological pathways associated with blood pressure maintenance, such as the renin-angiotensin and kallikrein-kinin systems, serin protease inhibitors, reactive oxygen scavenging, and lipid peroxidation. This study provides novel insights into the molecular pathways that may underlie the beneficial effects of TM, thus corroborating that TM could be proposed as a helpful functional food supplement in the treatment of hypertension

    Quantitative Real-Time PCR detection of TRPV1–4 gene expression in human leukocytes from healthy and hyposensitive subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Besides functioning as chemosensors for a broad range of endogenous and synthetic ligands, transient receptor potential vanilloid (TRPV) 1–4 channels have also been related to capsaicin (TRPV1), pain, and thermal stimuli perception, and itching sensation (TRPV1–4). While the expression of the TRPV1–4 genes has been adequately proved in skin, sensory fibres and keratinocytes, less is known about TRPV3 and TRPV4 expression in human blood cells.</p> <p>Results</p> <p>To study the gene expression of TRPV1–4 genes in human leukocytes, a quantitative Real-Time PCR (qRT-PCR) method, based on the calculation of their relative expression, has been developed and validated. The four commonly used house-keeping genes (HKGs), β-Actin (Act-B), glyceraldehyde-3P-dehydrogenase (GAPDH), hypoxanthine ribosyltransferase (HPRT1), and cyclophilin B (hCyPB), were tested for the stability of their expression in several human leukocyte samples, and used in the normalization procedure to determine the mRNA levels of the TRPV 1–4 genes in 30 healthy subjects. cDNAs belonging to all the TRPV1–4 genes were detected in leukocytes but the genes appear to be expressed at different levels. Our analysis did not show significant sex differences in TRPV1–4 cDNA levels in the 30 healthy subjects. The same qRT-PCR assay was used to compare TRPV1–4 expression between healthy controls and patients hyposensitive to capsaicin, pain and thermal stimuli: an almost doubled up-regulation of the TRPV1 gene was found in the pathological subjects.</p> <p>Conclusion</p> <p>The qRT-PCR assay developed and tested in this study allowed us to determine the relative expression of TRPV1–4 genes in human leukocytes: TRPV3 is the least expressed gene of this pool, followed by TRPV4, TRPV1 and TRPV2. The comparison of TRPV1–4 gene expression between two groups of healthy and hyposensitive subjects highlighted the evident up-regulation of TRPV1, which was almost doubly expressed (1.9× normalized fold induction) in the latter group. All the four house-keeping genes tested in this work (Act-B, GAPDH, hCyPB, HPRT1) were classified as optimal controls and showed a constant expression in human leukocytes samples. We recommend the use of these genes in similar qRT-PCR studies on human blood cells.</p

    Inflammatory pain and corticosterone response in infant rats: effect of 5-HT1A agonist buspirone prior to gestational stress

    Get PDF
    Our researches have shown that gestational stress causes exacerbation of inflammatory pain in the offspring; the maternal 5-HT1A agonist buspirone before the stress prevents the adverse effect. The serotonergic system and hypothalamo-pituitary-adrenal (HPA) axis are closely interrelated. However, interrelations between inflammatory pain and the HPA axis during the hyporeactive period of the latter have not been studied. The present research demonstrates that formalin-induced pain causes a gradual and prolonged increase in plasma corticosterone level in 7-day-old male rats; twenty-four hours after injection of formalin, the basal corticosterone level still exceeds the initial basal corticosterone value. Chronic treatments of rat dams with buspirone before restraint stress during gestation normalize in the offspring pain-like behavior and induce during the acute phase in the formalin test the stronger corticosterone increase as compared to the stress hormonal elevation in animals with other prenatal treatments. Negative correlation between plasma corticosterone level and the number of flexes+shakes is revealed in buspirone+stress rats. The new data enhance the idea about relativity of the HPA axis hyporeactive period and suggest that maternal buspirone prior to stress during gestation may enhance an adaptive mechanism of the inflammatory nociceptive system in the infant male offspring through activation of the HPA axis peripheral link
    • …
    corecore