19 research outputs found

    Precision Measurement of the Hydrogen-Deuterium 1S-2S Isotope Shift

    Get PDF
    Measuring the hydrogen-deuterium isotope shift via two-photon spectroscopy of the 1S-2S transition, we obtain 670994334606(15) Hz. This is a 10-times improvement over the previous best measurement confirming its frequency value. a calculation of the difference of the mean square charge radii of deuterium and hydrogen results in r2d-r2 p=3.82007(65)fm2, a more than twofold improvement compared to the former value

    Hydrogen-Deuterium Isotope Shift: From the 1S-2s-Transition Frequency to the Proton-Deuteron Charge-Radius Difference

    Get PDF
    We analyze and review the theory of the hydrogen-deuterium isotope shift for the 1S-2S transition, which is one of the most accurately measured isotope shifts in any atomic system, in view of a recently improved experiment. A tabulation of all physical effects that contribute to the isotope shift is given. These include the Dirac binding energy, quantum electrodynamic effects, including recoil corrections, and the nuclear-size effect, including the pertaining relativistic and radiative corrections. From a comparison of the theoretical result Δfth=670999566.90(66)(60)kHz (exclusive of the nonrelativistic nuclear-finite-size correction) and the experimental result Δfexpt=670994334605(15) Hz, we infer the deuteron-proton charge-radius difference (r2)d- (r2)p=3.82007(65) fm2 and the deuteron structure radius rstr=1.97507(78) fm

    Angular momentum spatial distribution symmetry breaking in Rb by an external magnetic field

    Get PDF
    Excited state angular momentum alignment -- orientation conversion for atoms with hyperfine structure in presence of an external magnetic field is investigated. Transversal orientation in these conditions is reported for the first time. This phenomenon occurs under Paschen Back conditions at intermediate magnetic field strength. Weak radiation from a linearly polarized diode laser is used to excite Rb atoms in a cell. The laser beam is polarized at an angle of pi/4 with respect to the external magnetic field direction. Ground state hyperfine levels of the 5S_1/2 state are resolved using laser-induced fluorescence spectroscopy under conditions for which all excited 5P_3/2 state hyperfine components are excited simultaneously. Circularly polarized fluorescence is observed to be emitted in the direction perpendicular to both to the direction of the magnetic field B and direction of the light polarization E. The obtained circularity is shown to be in quantitative agreement with theoretical predictions.Comment: Accepted for publication in Phys. Rev.

    Nonlinear absorption and refraction of picosecond and femtosecond pulses in HgTe quantum dot films

    Get PDF
    We report measurements of the saturated intensities, saturable absorption, and nonlinear refraction in 70-nm thick films containing 4 nm HgTe quantum dots. We demonstrate strong nonlinear refraction and saturable absorption in the thin films using tunable picosecond and femtosecond pulses. Studies were carried out using tunable laser pulses in the range of 400–1100 nm. A significant variation of the nonlinear refraction along this spectral range was demonstrated. The maximal values of the nonlinear absorption coefficients and nonlinear refractive indices determined within the studied wavelength range were −2.4 × 10−5 cm2 W−1 (in the case of 28 ps, 700 nm probe pulses) and −3 × 10−9 cm2 W−1 (in the case of 28 ps, 400 nm probe pulses), respectively. Our studies show that HgTe quantum dots can be used in different fields e.g., as efficient emitters of high-order harmonics of ultrashort laser pulses or as laser mode-lockers. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. Published under the CC BY 4.0 license.European Regional Development Fund (1.1.1.5/19/A/003), Latvian Council of Sciences (lzp-2020/2-0238). Institute of Solid State Physics, University of Latvia as the Center of Excellence acknowledges funding from the European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2

    Sub-Doppler spectroscopy of Rb atoms in a sub-micron vapor cell in the presence of a magnetic field

    Full text link
    We report the first use of an extremely thin vapor cell (thickness ~ 400 nm) to study the magnetic-field dependence of laser-induced-fluorescence excitation spectra of alkali atoms. This thin cell allows for sub-Doppler resolution without the complexity of atomic beam or laser cooling techniques. This technique is used to study the laser-induced-fluorescence excitation spectra of Rb in a 50 G magnetic field. At this field strength the electronic angular momentum J and nuclear angular momentum I are only partially decoupled. As a result of the mixing of wavefunctions of different hyperfine states, we observe a nonlinear Zeeman effect for each sublevel, a substantial modification of the transition probabilities between different magnetic sublevels, and the appearance of transitions that are strictly forbidden in the absence of the magnetic field. For the case of right- and left- handed circularly polarized laser excitation, the fluorescence spectra differs qualitatively. Well pronounced magnetic field induced circular dichroism is observed. These observations are explained with a standard approach that describes the partial decoupling of I and J states

    Koherenti procesi sarmu metalu ierosme un analitiska spektroskopija, izmantojot diozu lazerus

    No full text
    Available from Latvian Academic Library / LAL - Latvian Academic LibrarySIGLELVLatvi

    Gas transport in wood assessed by laser spectroscopy

    No full text
    The Gas in scattering media absorption spectroscopy (GASMAS) technique provides new opportunities to nondestructively study gas in highly scattering natural and man-made porous materials. In this paper, we report applications of the GASMAS method on wood samples using diode-laser-based spectroscopy on molecular oxygen. And the integrated oxygen absorption for wood of different densities and the anisotropy related to the fibre structure was also investigate

    Laser spectroscopy of free molecular oxygen dispersed in wood materials

    No full text
    The recently introduced Gas in Scattering Media Absorption Spectroscopy (GASMAS) technique is applied to the study of various wood samples. Molecular oxygen in the pores of the strongly scattering material is detected using diode laser spectroscopy around 760 nm. Diffuse light propagation in these media is studied by time-dispersion measurements. Furthermore, anisotropy related to the fibre structure of wood and gas diffusion properties are studied. Promising extensions of the experiments are discussed

    High-Sensitivity Whispering Gallery Mode Humidity Sensor Based on Glycerol Microdroplet Volumetric Expansion

    No full text
    We demonstrate a highly sensitive whispering gallery mode (WGM) relative humidity (RH) sensor based on a glycerol microdroplet. WGMs were excited using a 760 nm tunable semiconductor laser. We used free space coupling, which is effective when using a liquid resonator. A detailed analysis of different parameters influencing the sensor’s characteristics (sensitivity, hysteresis, resolution, stability, and temperature) is presented. The sensitivity of the sensor is one of the highest reported (2.85 nm/% RH in the range 50–70% RH with the resolution 1 × 10−4% RH). This type of humidity sensor has several advantages, such as high sensitivity, extended lifetime, good repeatability, and low cost, as well as the use of a non-toxic and environmentally friendly liquid
    corecore