42 research outputs found

    Using sensitivity equations for computing gradients of the FOCE and FOCEI approximations to the population likelihood

    Get PDF
    The first order conditional estimation (FOCE) method is still one of the parameter estimation workhorses for nonlinear mixed effects (NLME) modeling used in population pharmacokinetics and pharmacodynamics. However, because this method involves two nested levels of optimizations, with respect to the empirical Bayes estimates and the population parameters, FOCE may be numerically unstable and have long run times, issues which are most apparent for models requiring numerical integration of differential equations. We propose an alternative implementation of the FOCE method, and the related FOCEI, for parameter estimation in NLME models. Instead of obtaining the gradients needed for the two levels of quasi-Newton optimizations from the standard finite difference approximation, gradients are computed using so called sensitivity equations. The advantages of this approach were demonstrated using different versions of a pharmacokinetic model defined by nonlinear differential equations. We show that both the accuracy and precision of gradients can be improved extensively, which will increase the chances of a successfully converging parameter estimation. We also show that the proposed approach can lead to markedly reduced computational times. The accumulated effect of the novel gradient computations ranged from a 10-fold decrease in run times for the least complex model when comparing to forward finite differences, to a substantial 100-fold decrease for the most complex model when comparing to central finite differences. Considering the use of finite differences in for instance NONMEM and Phoenix NLME, our results suggests that significant improvements in the execution of FOCE are possible and that the approach of sensitivity equations should be carefully considered for both levels of optimization

    Sensitivity Equations Provide More Robust Gradients and Faster Computation of the FOCE Approximation to the Population Likelihood

    Get PDF
    Objectives: The first order conditional estimation (FOCE) method [1] is still one of the parameter estimation workhorses for nonlinear mixed effects (NLME) modeling used in population pharmacokinetics and pharmacodynamics [2]. However, because this method involves two nested levels of optimizations, with respect to the empirical Bayes estimates and the population parameters, FOCE may be numerically unstable and have long run times, issues which are most apparent for models requiring numerical integration of differential equations.Methods: We propose an alternative implementation of the FOCE method, and the related FOCEI, for parameter estimation in NLME models [3]. Instead of obtaining the gradients needed for the two levels of quasi-Newton optimizations from the standard finite difference approximation, gradients are computed using so called sensitivity equations.Results: The advantages of the approach are demonstrated using different versions of a pharmacokinetic model defined by nonlinear differential equations. We show that both the accuracy and precision of gradients can be improved extensively, which will increase the chances of a successfully converging parameter estimation [4]. We also show that the proposed approach can lead to markedly reduced computational times. The accumulated effect of the novel gradient computations ranged from a 10-fold decrease in run times for the least complex model when comparing to forward finite differences, to a substantial 100-fold decrease for the most complex model when comparing to central finite differences.Conclusions: Considering the use of finite differences in for instance NONMEM and Phoenix NLME, our results suggests that signicant improvements in the execution of FOCE are possible and that the approach of sensitivity equations should be carefully considered for both levels of optimization.References:[1] Wang Y. Derivation of various NONMEM estimation methods. J of Pharmacokin Pharmacodyn (2007) 34(5): 575-593.[2] Johansson \uc5M, Ueckert S, Plan EL, Hooker AC, Karlsson MO. Evaluation of bias, precision, robustness and runtime for estimation methods in NONMEM 7. J of Pharmacokin Pharmacodyn (2014) 41(3):223-238.[3] Almquist J, Leander J, Jirstrand M. Using sensitivity equations for computing gradients of the FOCE and FOCEI approximations to the population likelihood. In press J of Pharmacokin Pharmacodyn (2015).[4] Tapani S, Almquist J, Leander J, Ahlstr\uf6m C, Peletier LA, Jirstrand M, Gabrielsson J. Joint Feedback Analysis Modeling of Nonesterified Fatty Acids in Obese Zucker Rats and Normal Sprague–Dawley Rats after Different Routes of Administration of Nicotinic Acid. J Pharmaceutical Sciences (2014), 103(8):2571–2584

    NLMEModeling: A Wolfram Mathematica Package for Nonlinear Mixed Effects Modeling of Dynamical Systems

    Get PDF
    Nonlinear mixed effects modeling is a powerful tool when analyzing data from several entities in an experiment. In this paper, we present NLMEModeling, a package for mixed effects modeling in Wolfram Mathematica. NLMEModeling supports mixed effects modeling of dynamical systems where the underlying dynamics are described by either ordinary or stochastic differential equations combined with a flexible observation error model. Moreover, NLMEModeling is a user-friendly package with functionality for model validation, visual predictive checks and simulation capabilities. The package is freely available and provides a flexible add-on to Wolfram Mathematica

    Kinetic models in industrial biotechnology - Improving cell factory performance

    Get PDF
    An increasing number of industrial bioprocesses capitalize on living cells by using them as cell factories that convert sugars into chemicals. These processes range from the production of bulk chemicals in yeasts and bacteria to the synthesis of therapeutic proteins in mammalian cell lines. One of the tools in the continuous search for improved performance of such production systems is the development and application of mathematical models. To be of value for industrial biotechnology, mathematical models should be able to assist in the rational design of cell factory properties or in the production processes in which they are utilized. Kinetic models are particularly suitable towards this end because they are capable of representing the complex biochemistry of cells in a more complete way compared to most other types of models. They can, at least in principle, be used to in detail understand, predict, and evaluate the effects of adding, removing, or modifying molecular components of a cell factory and for supporting the design of the bioreactor or fermentation process. However, several challenges still remain before kinetic modeling will reach the degree of maturity required for routine application in industry. Here we review the current status of kinetic cell factory modeling. Emphasis is on modeling methodology concepts, including model network structure, kinetic rate expressions, parameter estimation, optimization methods, identifiability analysis, model reduction, and model validation, but several applications of kinetic models for the improvement of cell factories are also discussed

    Exposure-response modeling improves selection of radiation and radiosensitizer combinations

    Get PDF
    A central question in drug discovery is how to select drug candidates from a large number of available compounds. This analysis presents a model-based approach for comparing and ranking combinations of radiation and radiosensitizers. The approach is quantitative and based on the previously-derived Tumor Static Exposure (TSE) concept. Combinations of radiation and radiosensitizers are evaluated based on their ability to induce tumor regression relative to toxicity and other potential costs. The approach is presented in the form of a case study where the objective is to find the most promising candidate out of three radiosensitizing agents. Data from a xenograft study is described using a nonlinear mixed-effects modeling approach and a previously-published tumor model for radiation and radiosensitizing agents. First, the most promising candidate is chosen under the assumption that all compounds are equally toxic. The impact of toxicity in compound selection is then illustrated by assuming that one compound is more toxic than the others, leading to a different choice of candidate

    Unraveling the Pharmacokinetic Interaction of Ticagrelor and MEDI2452 (Ticagrelor Antidote) by Mathematical Modeling

    Get PDF
    The investigational ticagrelor-neutralizing antibody fragment, MEDI2452, is developed to rapidly and specifically reverse the antiplatelet effects of ticagrelor. However, the dynamic interaction of ticagrelor, the ticagrelor active metabolite (TAM), and MEDI2452, makes pharmacokinetic (PK) analysis nontrivial and mathematical modeling becomes essential to unravel the complex behavior of this system. We propose a mechanistic PK model, including a special observation model for post-sampling equilibration, which is validated and refined using mouse in vivo data from four studies of combined ticagrelor-MEDI2452 treatment. Model predictions of free ticagrelor and TAM plasma concentrations are subsequently used to drive a pharmacodynamic (PD) model that successfully describes platelet aggregation data. Furthermore, the model indicates that MEDI2452-bound ticagrelor is primarily eliminated together with MEDI2452 in the kidneys, and not recycled to the plasma, thereby providing a possible scenario for the extrapolation to humans. We anticipate the modeling work to improve PK and PD understanding, experimental design, and translational confidence

    Modeling long-term tumor growth and kill after combinations of radiation and radiosensitizing agents

    Get PDF
    Purpose: Radiation therapy, whether given alone or in combination with chemical agents, is one of the cornerstones of oncology. We develop a quantitative model that describes tumor growth during and after treatment with radiation and radiosensitizing agents. The model also describes long-term treatment effects including tumor regrowth and eradication. Methods: We challenge the model with data from a xenograft study using a clinically relevant administration schedule and use a mixed-effects approach for model-fitting. We use the calibrated model to predict exposure combinations that result in tumor eradication using Tumor Static Exposure (TSE). Results: The model is able to adequately describe data from all treatment groups, with the parameter estimates taking biologically reasonable values. Using TSE, we predict the total radiation dose necessary for tumor eradication to be 110\ua0Gy, which is reduced to 80 or 30\ua0Gy with co-administration of 25 or 100\ua0mg\ua0kg\ua0−1\ua0of a radiosensitizer. TSE is also explored via a heat map of different growth and shrinkage rates. Finally, we discuss the translational potential of the model and TSE concept to humans. Conclusions: The new model is capable of describing different tumor dynamics including tumor eradication and tumor regrowth with different rates, and can be calibrated using data from standard xenograft experiments. TSE and related concepts can be used to predict tumor shrinkage and eradication, and have the potential to guide new experiments and support translations from animals to humans

    Modeling of radiation therapy and radiosensitizing agents in tumor xenografts

    Get PDF
    III-36\ua0Tim\ua0Cardilin\ua0Modeling of radiation therapy and radiosensitizing agents in tumor xenografts\ua0Tim Cardilin (1,2), Joachim Almquist (1), Mats Jirstrand (1), Astrid Zimmermann (3), Floriane Lignet (4), Samer El Bawab (4), and Johan Gabrielsson (5)(1) Fraunhofer-Chalmers Centre, Gothenburg, Sweden, (2) Department of Mathematical Sciences, Chalmers University of Technology and Gothenburg University, Gothenburg, Sweden, (3) Merck, Translational Innovation Platform Oncology, Darmstadt, Germany, (4) Merck, Global Early Development - Quantitative Pharmacology, Darmstadt, Germany, (5) Division of Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, SwedenObjectives:\ua0To conceptually and mathematically describe the treatment effects of radiation and radiosensitizing agents on tumor volume in xenografts with respect to short- and long-term effects.Methods:\ua0Data were generated in FaDu xenograft mouse models, where animals were treated with radiation given either as monotherapy (2 Gy per dose) or together with an early-discovery radiosensitizing agent (25 or 100 mg/kg per dose) that interferes with the repair of the DNA damage induced by irradiation. Animals received treatment following a clinically-relevant administration schedule with doses five days a week for six weeks. Tumor diameters were measured by caliper twice a week for up to 140 days. A pharmacodynamic tumor model was adapted from a previously-published model [1,2]. The improved model captures both short- and long-term treatment effects including tumor eradication and tumor regrowth. Short-term radiation effects are described by allowing lethally irradiated cells up to one more cell division before apoptosis. Long-term radiation effects are described by an irreversible decrease in tumor growth rate. The radiosensitizing agent was assumed to stimulate both processes. The model also includes a natural death rate of cancer cells. The model was calibrated to the xenograft data using a mixed-effects approach based on the FOCE method that was implemented in Mathematica [3]. Between-subject variability was accounted for in initial tumor volume, as well as in the short- and long-term radiation effects.Results:\ua0Data across all treatment groups were well-described by the model. All model parameters were estimated with acceptable precision and biologically reasonable values. Vehicle growth was approximately exponential during the observed time period with an estimated tumor doubling time of approximately 5 days. Tumor growth following radiation therapy resulted in significant tumor regression followed by either tumor eradication (2 animals) or slow regrowth (7 animals). The short- and long-term effects incorporated into the tumor model were able to account for both of these scenarios. A simple analysis shows that if the tumor growth rate is decreased below the natural death rate, the tumor will be eradicated. Otherwise, the tumor will regrow but at a slower rate compared to pre-treatment. The model predicts that each fraction of radiation (2 Gy) results in lethal damage in 15 % of viable cells, and that a total dose above 120 Gy will eradicate the tumor. Tumor growth following combination therapy with a lower dose (25 mg/kg) resulted in more cases of tumor eradication (6 animals) and fewer cases of regrowth (3 animals), whereas combination therapy with the higher dose (100 mg/kg) resulted in tumor eradication in all 9 animals. When radiation therapy was complemented by radiosensitizing treatment (100 mg/kg per dose), each fraction of 2 Gy was estimated to kill 25 % of viable cells, and the total radiation dose required for tumor eradication was decreased by a factor four to 30 Gy.Conclusions:\ua0A tumor model has been developed to describe the treatment effects of radiation therapy, as well as combination therapies involving radiation, in tumor xenografts. The model distinguishes between short- and long-term effects of radiation treatment and can describe different tumor dynamics, including tumor eradication and tumor regrowth at different rates. The novel tumor model can be used to predict treatment outcomes for a broad range of treatments including radiation therapy and combination therapies with different radiosensitizing agents.References:\ua0[1] Cardilin T, Almquist J, Jirstrand M, Zimmermann A, El Bawab S, Gabrielsson J. Model-based evaluation of radiation and radiosensitizing agents in oncology. CPT: Pharmacometrics & Syst. Pharmacol.\ua0(2017).[2] Cardilin T, Zimmermann A, Jirstrand M, Almquist J, El Bawab S, Gabrielsson J. Extending the Tumor Static Concentration Curve to average doses – a combination therapy example using radiation therapy. PAGE 25 (2016) Abstr 5975 [www.page-meeting.org/?abstract=5975].[3] Almquist J, Leander J, Jirstrand M. Using sensitivity equations for computing gradients of the FOCE and FOCEI approximations to the population likelihood. J Pharmacokinet Pharmacodyn (2015) 42: 191-209
    corecore