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Abstract
Purpose Radiation therapy, whether given alone or in combination with chemical agents, is one of the cornerstones of 
oncology. We develop a quantitative model that describes tumor growth during and after treatment with radiation and 
radiosensitizing agents. The model also describes long-term treatment effects including tumor regrowth and eradication.
Methods We challenge the model with data from a xenograft study using a clinically relevant administration schedule and 
use a mixed-effects approach for model-fitting. We use the calibrated model to predict exposure combinations that result in 
tumor eradication using Tumor Static Exposure (TSE).
Results The model is able to adequately describe data from all treatment groups, with the parameter estimates taking bio-
logically reasonable values. Using TSE, we predict the total radiation dose necessary for tumor eradication to be 110 Gy, 
which is reduced to 80 or 30 Gy with co-administration of 25 or 100 mg kg−1 of a radiosensitizer. TSE is also explored via 
a heat map of different growth and shrinkage rates. Finally, we discuss the translational potential of the model and TSE 
concept to humans.
Conclusions The new model is capable of describing different tumor dynamics including tumor eradication and tumor 
regrowth with different rates, and can be calibrated using data from standard xenograft experiments. TSE and related con-
cepts can be used to predict tumor shrinkage and eradication, and have the potential to guide new experiments and support 
translations from animals to humans.
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Introduction

Radiation therapy is one of the leading treatment modali-
ties in modern oncology, with a utilization rate of about 
50% [1]. Treatments with ionizing radiation aim to destroy 
cancerous cells while limiting the damage to the surround-
ing tissues [2]. The primary mode of cell killing is through 
induced single- and double-strand breaks in DNA that, if 
not repaired, result in cell death through mechanisms such 
as apoptosis and mitotic catastrophe [3]. Successful treat-
ment is contingent on accurate delivery and on host cells 
exhibiting superior repair mechanisms compared to their 
cancerous counterparts [2]. Biological tumor features with 
established impact on treatment outcome include hypoxia, 
ability to repopulate, and inherent radioresistance. The 
identification of such features has facilitated the develop-
ment of targeted molecules that sensitize cancer cells to 
radiation or protect the surrounding tissue [4]. Modulating 
the response to DNA damage, e.g., through prevention of 
non-homologous end-joining and homologous recombina-
tion, the main repair mechanisms of double-strand breaks 
as well as single-strand break repair mechanisms such as 
base excision repair, have emerged as popular treatment 
strategies [4]. Moreover, recent successes of immunothera-
peutic treatments in advanced cancers have paved the way 
for combinations of immunotherapy with radiation [5]. 
There is also evidence to suggest that ionizing radiation 
can act as an immune modulator and enhance immune 
recognition of cancerous tumors, e.g., through the release 
of tumor antigens from dying cells [5].

Integration of quantitative techniques to support effi-
cient study designs and dose selections plays an increas-
ingly important role in pharmaceutical development, 
including oncology [6]. Performing experiments in silico 
can also lead to faster, cheaper, and more ethical drug 
development by decreasing the number of in vivo experi-
ments [7]. Semi-mechanistic models of chemical inter-
ventions are regularly employed in preclinical oncology 
to make predictions based on volume–time data collected 
from xenograft studies [6, 8]. Applications also include 
assessing drug synergies and comparing different treat-
ments [9, 10]. For radiation therapy, the de facto means of 
calculating cell survival is given by the linear-quadratic 
(LQ) model, which describes the probability of cell sur-
vival using a linear and a quadratic term in dose [11]. The 
LQ model has multiple mechanistic interpretations, e.g., 
relating the quadratic term to binary misrepair of double-
strand breaks produced by different radiation tracks (i.e., 
different particles) and the linear term to lethal lesions 
produced by one radiation track [12]. The LQ model is 
proven to yield accurate predictions for dose fractions up 
to 18 Gy, and contains sufficiently few parameters to be 

practically useful [12]. Quantitative models at different 
scales have been proposed to describe tumor dynamics 
after radiation therapy [11]. Two simple models featured 
by Sachs et al. and Schättler and Ledzewics shared the 
common feature of capturing the LQ prediction of the 
surviving cell fraction [13, 14]. In a previous analysis, 
Cardilin et al. proposed a semi-mechanistic model for 
combinations of ionizing radiation and radiosensitizing 
treatment that agrees with the LQ prediction [15]. How-
ever, the model does not account for long-term effects such 
as tumor eradication and regrowth dynamics.

The analysis presented here is the fourth in a series of 
quantitative approaches to tumor growth data. A schematic 
illustration of the progression of tumor models and Tumor 
Static Exposure (TSE) concepts through these analyses is 
shown in Fig. 1. The first paper proposed a tumor model 
for combinations of the anticancer drugs cetuximab and 
cisplatin [16]. One important feature was the inclusion of 
a natural death rate of cancer cells. The main contribution 
was the introduction of the Tumor Static Concentration 
(TSC) concept for combinations of two or more drugs that 
intervene with tumor volume, and its connection to drug 
synergies. In particular, a synergistic drug effect leads to 
a more convex (curving inward) TSC curve, whereas an 
antagonistic effect results in a more concave (curving out-
ward) TSC curve [16]. A subsequent analysis presented a 
tumor model for combinations of radiation and chemical 
provocation that complied with the LQ prediction in radio-
biology [15]. Radiation-induced cell killing was described 
as triggering apoptosis (possibly lumped with other death 
mechanisms) in lethally irradiated cells. The analysis also 
featured an extension of the TSC concept to combinations of 
radiation and chemicals called TSE. A third analysis showed 
how TSE can be used to rank and compare combinations 
of drugs (and radiation) by relating the ability to achieve 
tumor regression, i.e., TSE, to toxicity (Cardilin et al. 2019, 
preprint). The analysis also demonstrated the applicability of 
the previous radiation model by applying it to combinations 

Fig. 1  Schematic illustration of development of tumor models and 
TSE concepts
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of radiation and three different radiosensitizers. Moreover, 
the TSE concept was extended to Tumor Shrinkage Expo-
sures  (TSEdV) that identify drug combinations that result in 
a particular shrinkage rate. In the current study, we extend 
the previous model to long-term radiochemical intervention 
by complementing radiation-induced apoptosis with inhibi-
tion of growth that can be linked to changes in the tumor 
microenvironment, and the repair/misrepair of lethal lesions. 
The impact of radiosensitizing intervention is described 
enhancing both radiation effects. The proposed model cap-
tures tumor eradication as well as tumor regrowth with dif-
ferent rates. In particular, it allows for tumor regrowth that 
is slower than for unirradiated tumors. We then challenged 
the model by data from a xenograft study using a clinically 
relevant treatment protocol. Three different TSE curves are 
introduced based on short-term radiochemical effects, long-
term radiochemical effects, and a combination of both. Fur-
thermore, TSE is accompanied by a heat map that illustrates 
gradual tumor growth or shrinkage associated with different 
combinations of radiation and radiosensitizer. Finally, we 
discuss the translational potential of the model and the TSE 
curve, particularly through an allometric scaling approach.

Methods

Experimental data

Tumor volume data were generated in FaDu xenograft 
mice models. Five-to-six-week-old female CD1 (nu/nu) or 
NMRI (nu/nu) mice were used (Charles River Laboratories, 
Sulzfeld, Germany). The animals were kept in groups of ten 
in polysulfone cages (26.5 × 20.5 × 14 cm) with a room tem-
perature of 24 ± 2 °C and a light cycle of 12 h of light and 
12 h of darkness. Drinking water and sterile high- protein 
maintenance diet were provided ad libitum. Mice received 
subcutaneous injections in the right lower back [low number 
of fractions (= 5)] or the right thigh [high number of frac-
tions (= 30)] with 2.5 million FaDu cells (ATCC). When 
tumor xenografts reached a mean volume of about 50–110 
 mm3, the mice were treated with radiation (local tumor irra-
diation, X-RAD320 irradiation cabinet Precision X-ray Inc., 
15 mA, 250 kV, 58 s, 50 cm FSD, collimator, 2 mm A1 filter) 
either alone or together with a radiosensitizing agent. Irra-
diation took place 30 min after radiosensitizer application. 
The radiosensitizer is a small-molecule targeted therapy that 
interferes with the repair of DNA damage. Tumor length ( L ) 
and width ( W  ) were measured with calipers twice a week 
for up to 12 weeks after treatment arrest. Tumor volumes 
(V) were calculated using the formula V = L ×W2∕2 . Mice 
were sacrificed at the end of the experiment, or accord-
ing to the criteria defined by GV-Solas (Gesellschaft für 

Versuchstierkunde, Germany). Data were collected in Study 
Advantage™.

Pharmacodynamic data were based on 40 mice with 
N = 10 in each of the following four groups: vehicle control, 
radiation treatment (2 Gy), and combination treatment with 
radiation (2 Gy) and radiosensitizer (25 or 100 mg kg−1). 
Animals received treatment 5 days a week (Mon–Fri) for 
6 weeks.

Pharmacokinetic data were based on eight animals. Half 
( N = 4 ) were given an oral dose of 25 mg kg−1 of the radio-
sensitizer, and the other half ( N = 4 ) received an oral dose 
of 100 mg kg−1. Plasma samples were taken 1, 2, and 6 h 
after dosing. Quantitative determination of plasma concen-
trations was performed using HPLC–MS/MS assay.

All experiments were approved in accordance with the 
German animal welfare regulations by the Regierungsprä-
sidium Darmstadt, Hessen, Germany (protocol registration 
numbers DA 4/Anz. 397 and DA 4/Anz. 398).

Exposure to radiosensitizer

Exposure to the radiosensitizer was described using a stand-
ard one-compartment pharmacokinetic model represented by 
the following differential equation:

where ke is the elimination rate constant, V  the distribu-
tion volume, F the bioavailability, D the dose administered 
at time t = 0 , and C the plasma concentration of the test 
compound.

Tumor model of radiation and radiosensitizer 
combination treatment

A tumor model was developed to describe treatment effects 
of ionizing radiation (IR) and radiosensitizing agents on 
tumor volume. The model is an extension of an existing 
model (see [15]) to account for long-term growth dynam-
ics. A schematic illustration of the model is shown in Fig. 2.

The model consists of a main compartment V1 of prolifer-
ating cancer cells and three transit compartments, V2 , V3 , and 
V4 , which damaged cells must go through before dying. The 
model also includes natural cell death, meaning that some cells 
traverse the transit compartments even for untreated tumors. 
Two effects of ionizing radiation are described by the model: 
immediate cell killing of proliferating cells by triggering apop-
tosis or other death mechanisms, and inhibition of the prolifer-
ating capabilities of the surviving cells. Immediate cell killing 
sends a fraction of the proliferating cells to the compartment 
U1 after which the cells are allowed up to one more cell divi-
sion (and in the process transferring the daughter cells to the 
compartment U2 ) before dying via the transit compartments 

(1)
dC

dt
= −keC,C(0) =

DF

V
,
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V2 , V3 , and V4 . Such an effect was used in an earlier analy-
sis (see [15]) and is supported by experiments, showing that 
irradiated cells can survive one or multiple cell cycles before 
dying through mitotic catastrophe [17, 18]. The second radia-
tion effect describes an inhibition of the growth rate of the 
surviving cells. This is a regularly observed phenomenon that 
can be due to mutations and reduced vascularization in the 
tumor, as well as changes in the tumor microenvironment [19]. 
The degree of inhibition depends on the accumulated radiation 
dose, IRTot , to describe effects that linger beyond the treat-
ment period. Finally, radiosensitizing treatment is described as 
modulating both radiation effects. More precisely, the radiation 
effects are enhanced depending on the radiosensitizer exposure 
at the time of irradiation. Turnover of proliferating cells in V1 
is described by the equation:

where kg and kk are the growth and kill rate, respectively. 
During irradiation at times ti a fraction F of viable cells 
will be lethally irradiated and therefore transferred from V1 
to U1 . Here, V1(t

−
i
) and V1

(

t+
i

)

 denote the volume of cells in 
V1 before and after irradiation at time ti , respectively. The 
lethally irradiated fraction F depends on the radiation dose 
Dti

 and concurrent radiosensitizer concentration Cti
 and is 

given by the following equation:

(2)
dV1

dt
= kgI

(

IRTot

)

V1 − kkV1, t ≠ ti

V1(t
+
i
) = V1(t

−
i
) − F

(

Dti
,Cti

)

V1, i = 1,… , n,

(3)F(D,C) = 1 − exp
[

−(1 + aC)(�D + �D2)
]

,

where � and � are the linear and quadratic parameters in 
the LQ model of radiobiology [10], and a is a parameter 
associated with the potency of the radiosensitizer. Radiation-
induced inhibition of growth is given by the function I:

where � is a radiation parameter associated with the degree 
of growth inhibition. Turnover of dying cells in the dam-
age compartments V2,… ,V4 is described by the following 
equations:

The compartments U1 and U2 allow lethally irradiated 
cells up to one more cell division and are governed by the 
following equations:

with the function F and the parameters kg and kk defined as 
above. Here, U1(t

−
i
) and U1

(

t+
i

)

 denote the volume of cells 

(4)I
(

IRTot

)

= exp(−�IRTot),

(5)

dV2

dt
= kkV1 + kkU1 + kkU2 − kkV2

dV3

dt
= kkV2 − kkV3

dV4

dt
= kkV3 − kkV4.

(6)

dU1

dt
= −kgU1 − kkU1, t ≠ ti

U1

(

t+
i

)

= U1

(

t−
i

)

+ F
(

Dti
,Cti

)

V1, i = 1,… , n

dU2

dt
= 2kgU1 − kkU2,

Fig. 2  Tumor model for radiation and radiosensitizer combination 
treatment. Ionizing radiation (IR) induces apoptosis in a fraction of 
proliferating cancer cells. The model also includes a long-term radia-
tion effect whereby the tumor growth rate is inhibited. V1 denotes pro-
liferating cancer cells, V2, V3, and V4 dying cells with different degree 
of damage, U1 lethally irradiated cells that are capable of up to one 

more cell division before starting a series of transitions leading to cell 
death, U2 lethally irradiated cells that cannot proliferate, IR the effect 
of ionizing radiation, S1 and S2 the stimulatory effects of radiosensi-
tizing treatment on the short- and long-term radiation effects, respec-
tively, kg the tumor growth rate, and kk a kill rate parameter related to 
transitions leading to cell death
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in U1 before and after irradiation at time ti , respectively. 
Note that the equation for U1 has a term −kgU1 , whereas the 
equation for U2 has the term 2kgU1 . The factor 2 represents 
that, for every cell that leaves U1 (by triggering mitosis), 
two daughter cells enter U2 . The accumulated radiation dose 
IRTot , after accounting for radiosensitizing enhancement, is 
given by the following:

where b is a potency parameter associated with the radio-
sensitizer. Here, IRTot(t

−
i
) and IRTot(t

+
i
) denote the accumu-

lated radiation dose before and after the ith dose at time ti.  
Thus, the accumulated radiation dose is modulated by the 
radiosensitizer depending on the plasma exposure at the time 
of irradiation. The initial conditions for all model compart-
ments are given by the following:

Note that not all initial cells are assumed to be viable. Some 
of the initial volume will consist of dying cells in the damage 
compartments V2,… ,V4 , which is consistent with the pres-
ence of a natural kill rate. The distribution of initial volume 
among the compartments is done to ensure strictly exponential 
growth (see [16]).

Tumor static exposure

The previous publications have derived the concepts of TSC 
and TSE, i.e., the exposures of one or multiple compounds that 
result in tumor stasis [15, 16, 20]. The transition from TSC to 
TSE was made to include exposure metrics other than plasma 
concentrations, in particular doses of ionizing radiation [15]. 
For combinations of radiation and radiosensitizer, the asso-
ciated TSE curve consists of all pairs of radiation dose and 
plasma concentration, such that exposures above the curve will 
lead to tumor regression. One can derive a TSE curve based on 
the long-term treatment effect using the model in Eq. 2. The 
TSE curve is derived from the equation for V1 by considering 
for which total radiation doses and radiosensitizer concentra-
tions the growth rate becomes equal to the natural death rate. 
Any exposure combination above this level will result in a neg-
ative net growth rate and, therefore, tumor shrinkage. In these 
calculations, the short-term radiation effect can be ignored, 
since it only has a temporary effect on tumor volume. From 
Eq. 2, the growth and kill rates will be equal when

where knet is the net growth rate. Moreover, the (effective) 
total radiation dose, after an effective increase due to radio-
sensitizing treatment is accounted for, is given by (1 + aC)D , 

(7)IRTot(t
+
i
) = IRTot(t

−
i
) +

(

1 + bCti

)

Dti
,

(8)Vi(0) = V0

(

kk

kg

)i−1

, Uj(0) = 0, IRTot(0) = 0.

(9)knet := kg exp(−�IRTot) − kk = 0,

where total radiation dose and radiosensitizer concentration 
are denoted D and C , respectively. Inserting this into Eq. 9 
yields the following:

Equation 10 describes a curve in the plane with the plasma 
concentration C along the horizontal axis, and the total radia-
tion dose and the total radiation dose D along the vertical axis. 
Equation 10 can be solved for D to obtain the following:

Thus, for each value of the plasma exposure of the radio-
sensitizer C , the right-hand side of Eq. 11 gives the necessary 
total radiation dose D , such that the tumor will eventually be 
eradicated. Equation 11 can be viewed as a function:

where � is the vector of parameters (here kg, kk, �, and a ). 
The graph of this function will be the TSE curve. Alterna-
tively, one can solve for C in Eq. 11 to obtain

which describes the same curve as Eq. 11. Similarly, Eq. 13 
can be viewed as a function C = g(�; D) that, for every radia-
tion dose, D determines the corresponding radiosensitizer 
concentration C , such that the combination will lead to 
tumor eradication.

Computational methods

Model-fitting was performed using a mixed-effects approach 
based on a first-order conditional estimation (FOCE) method 
in a computational framework developed at the Fraun-
hofer–Chalmers Research Centre for Industrial Mathemat-
ics (Gothenburg, Sweden) and implemented in Mathematica 
(Wolfram Research) [21]. The tumor model was simultane-
ously fitted to tumor volume data from all four treatment 
arms. As in a previous publication, the quotient �∕� was set 
to the typical value of 10 [15]. Model evaluation was based 
on individual fit, empirical Bayes estimates (EBEs), residual 
analysis, and visual predictive checks.

Results

Exposure to radiosensitizer

Exposure to the radiosensitizer was described using a stand-
ard one-compartment pharmacokinetic model. The compound 
was characterized by a short half-life (3 h), resulting in no 

(10)kg exp(−�(1 + aC)D) − kk = 0.

(11)
D = log(kg∕kk)

�(1 + aC)
.

(12)D = f (�; C),

(13)C =
log(kg∕kk)

a�D
−

1

a
,
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accumulation of drug with 24 h dosing intervals. The doses 
of 25 and 100 mg kg−1 lead to peak plasma concentrations of 
2 and 8 µg mL−1, respectively. Simulated exposure profiles 
following daily doses of 25 mg kg−1 and 100 mg kg−1 5 days 
a week for 6 weeks are shown in Fig. 3.

Tumor model of radiation and radiosensitizer 
combination treatment

The tumor model adequately described the xenograft data from 
each of the four treatment groups. Table 1 shows the parameter 
estimates obtained from simultaneously fitting the model to 
all data using a mixed-effects approach. System and radiation 
parameters were estimated with good precision (RSE < 20%), 
whereas drug parameters had RSEs of 31% and 35%. Between-
subject variability was considerable (CV >40%) for all three 
parameters with population variability. There was negligi-
ble shrinkage (< 10%) for the parameters V0 and � and some 
shrinkage for � (28%), due to animals receiving radiation and 
100 mg kg−1 radiosensitizer showing similar growth profiles. 
Figure 3 shows the individual fit for two mice from each treat-
ment group. Vehicle growth (Fig. 3a, b) was approximately 
exponential. Radiation treatment led to considerable tumor 
regression, but led to regrowth in 7/9 mice. In contrast, com-
bination treatment with the radiosensitizer dose of 25 mg kg−1 
led to tumor eradication in 6/9 mice, and with the higher dose 
of 100 mg kg−1, all tumors were eradicated. A version of Fig. 3 
with all data plotted on the same time and volume scales is 
provided in Appendix A (Fig. 8).

Using the estimated parameter values, one can derive a 
tumor doubling time of 5 days for untreated animals. The 
median initial tumor volume was estimated to 81 mm3. 
Moreover, the estimated value of 0.082 Gy−1 for the param-
eter � corresponds to 15% of proliferating cells dying 
after each fraction of 2 Gy. Using the estimated value of 

0.0034 Gy−1 for the long-term radiation effect, the model 
predicts that a total dose above 120 Gy (i.e., double the cur-
rent dose) is required for tumor eradication. When radia-
tion was combined with radiosensitizing treatment (25 or 
100 mg kg−1 per dose), 19% or 25% of proliferating cells, 
respectively, were killed after each fraction of radiation, and 
the predicted total radiation dose necessary for tumor eradi-
cation was lowered to 80 Gy or 30 Gy, respectively. Visual 
predictive checks and EBEs for all four treatment arms are 
shown in Appendix A (Figs. 9 and 10).

Figure  5 shows a simulation of how the net growth 
rate given by Eq. 9 changes over time for each of the four 
treatment groups. Radiation-induced inhibition of growth 
depends of accumulated dose, and hence, the effect is per-
manent and growth rate will continually decrease with addi-
tional radiation doses. Vehicle control (curve A) remains 
unchanged, whereas radiation alone (curve B) decreases 
growth rate, but does not result in a negative rate with 
tumor shrinkage. Combination treatment with 25 mg kg−1 
of the radiosensitizer (curve C) leads to a net growth rate 
that barely becomes negative, meaning that this combina-
tion is sufficient for tumor eradication for a typical indi-
vidual. Finally, combination treatment with radiation and 
100 mg kg−1 of the radiosensitizer and radiation (curve D) 
leads to a growth rate that is clearly negative.

Tumor static exposure

The TSE curve for different radiation and radiosensitizer 
combinations was computed using Eq. 7 together with the 
parameter estimates from Table 1 and is shown in Fig. 6 
(left). The TSE curve shows that a radiation dose of 120 Gy 
is required for tumor shrinkage, which is reduced to 80 and 
30 Gy during co-administration with 25 and 100 mg kg−1 
of the radiosensitizer, respectively. There is no TSE value 
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Fig. 3  Exposure to the radiosensitizing agent. Treatment was given 5 
days a week for 6 weeks. Mice received daily doses of 25 mg kg−1 
(blue) or 100 mg kg−1 (green) via the oral route

Table 1  Pharmacodynamic parameter estimates for the tumor model 
describing the effects of radiation and radiosensitizer combination 
treatment

a Proportional error
b Additive error

Parameter Population median 
(RSE%)

Between-subject 
variability (RSE%)

kg  (day−1) 0.40 (4) –
kk  (day−1) 0.26 (5) –
V
0  (mm3) 27.0 (7) 50 (9)

�  (kGy−1) 4.0 (14) 46 (14)
�  (kGy−1) 54.0 (18) 42 (10)
a (mL μg−1) 0.42 (31) –
b (mL μg−1) 0.15 (35) –
�a (%) 24.0 (3) –
�b  (mm3) 6.9 (5) –
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corresponding to radiosensitizer treatment alone, due 
to its lack of intrinsic activity. Figure 6 (right) illustrates 
tumor growth following exposure below, at, or above the 
TSE curve, leading to tumor growth, stasis, or eradication, 
respectively. The associated exposure combinations (A, B, 
or C) have been marked on the TSE curve.

TSE also varies within the population. One can compute 
a TSE curve for each individual using the EBEs obtained 
from mixed-effect modeling (Fig. 7, left). The individual 
TSE curves are shown in blue, whereas the TSE curve for 
the median (Fig. 7, left) is shown in red. There is particularly 
large variability in the total radiation dose required for tumor 
eradication, with doses ranging from 50 Gy to above 200 Gy 
across the population. To complement Fig. 7, a sensitivity 
analysis of the median TSE curve was performed (Appendix 
A, Fig. 11), which shows that TSE changes the most when 
either kg or kk is adjusted.

Although the TSE curve differentiates between tumor 
growth and tumor shrinkage, it does not provide informa-
tion about the growth rate or shrinkage rate associated with 
a particular combination. Figure 7 (right) shows a heat map 
of the net tumor growth rate after combinations of radia-
tion and radiosensitizer treatment for the median individual. 
The different colors represent different growth or shrinkage 
rates, with the red region in the top right corresponding to 
shrinkage rates around − 0.2 h−1, and the bottom left, to 
growth rates around 0.1 h−1. Each exposure combination 
corresponds to a specific growth or shrinkage rate. A three-
dimensional figure corresponding to the heat map in Fig. 7 
(right) is shown in Appendix A (Fig. 12).

Discussion

This analysis is the fourth in a series of quantitative 
approaches to tumor growth data in which we present a new 
series of models capturing combination treatments. Figure 1 
illustrates the progression of models and TSE concepts 
through these analyses. Models have been developed that 
describe chemical combinations as well as radiation com-
bined with chemical intervention [15, 16]. Important biolog-
ical features have been captured such as natural cell death, 
tumor regrowth, and eradication. This shows how modeling 
can improve our understanding of the target biology from a 
macro-perspective. TSE has evolved from a value [22], to a 
curve, or surface, to include radiation, and to describe long-
term or irreversible effects.  TSEdV curves and heat maps 
provide a more nuanced understanding of tumor evolution, 
beyond the binary of tumor growth or shrinkage. These 
generalizations are important to capture as many treatment 
forms and effects as possible. TSE can also be used to sup-
port the selection of compounds in the discovery process 
(Cardilin et al. 2019, preprint).

Exposure to radiosensitizer

Pharmacokinetics of the radiosensitizer was adequately 
described by a one-compartment model. The estimated half-
life of 3 h gives no accumulation of drug with the current 
administration schedule. Although the radiosensitizer was 
given orally, absorption was not included in the final model. 
Data only allowed to develop a disposition model which was 
sufficient to describe the plasma concentration at the time of 
irradiation. This approach was conservative in the sense that 
it avoided underestimating the plasma concentration at the 
time of irradiated, which would have led to an overestima-
tion of the radiosensitizer potency.

Tumor model of radiation and radiosensitizer 
combination treatment

The proposed tumor model (Fig. 2) was able to simultaneously 
describe all four treatment groups. Vehicle growth was ade-
quately explained by an exponential growth function (Fig. 4a, 
b). The estimated kg of 0.4 h−1 is similar to the earlier value of 
0.5 h−1 for the same cell line [15]. In general, the net growth 
rate can range from 0.05 to 0.5 h−1, which is comparable to 
our estimate kg − kk = 0.14 h−1 [9, 16, 22–28]. The initial dis-
tribution of tumor volume was chosen to achieve a net growth 
rate kg − kk , which also meant that part of the initial volume 
was made up of nonproliferating cells. This leads to a larger 
estimated growth rate kg compared to if the initial volume was 
made up of only proliferating cells, and avoids under predicting 
the necessary exposure for tumor regression, i.e., TSE. Other 
commonly employed growth functions include Gompertz, (gen-
eralized) logistic, and Simeoni [8]. A Gompertz model was also 
fitted to the data, but the additional capacity parameter could 
not be reliably estimated. Radiation treatment (Fig. 4c, d) was 
sufficiently described by a combination of radiation-induced 
cell killing and growth inhibition. Cell killing by apoptosis (and 
possibly other death mechanisms) was also featured in a previ-
ous analysis [15]. The fraction of lethally irradiated cells was 
chosen according to the LQ model, an approach employed by 
Okumura et al. and recently by Tariq et al. [23, 29]. However, 
our inclusion of compartments Ui to allow lethally irradiated 
cells additional cell divisions was a novelty [15]. This idea is 
supported by experiments, showing that irradiated cells can sur-
vive one or multiple cell cycles before dying through mitotic 
catastrophe [17, 18]. A similar idea was proposed by Watanabe 
et al. who modified the transfer between the proliferating and 
dying states to account for additional cell cycles [24]. However, 
that model only described response to a single dose of irra-
diation, not a combination with chemical intervention. Moreo-
ver, Watanabe et al. discussed the impact of radiation damage 
to the vasculature structure and the possibility of describing 
such an effect in their model [24]. In our model, the effect 
of radiation damage to the vasculature structure and tumor 
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microenvironment was described as a permanent inhibition of 
the natural growth rate. This was needed to capture two types 
of tumor evolution that were clearly seen in the data (Fig. 4): 

complete tumor eradication, and tumor regrowth with different 
rates. Slower regrowth compared to control animals was clearly 
observed in our data and could be attributed to mutations and 

Fig. 4  Experimental data (symbols) and model predictions (solid 
curves) of tumor volume versus time for the four treatment groups: 
a, b vehicle control, c, d radiation (2 Gy per dose), e, f combina-
tion treatment with radiation (2 Gy per dose) and radiosensitizer (25 

mg  kg−1 per dose), and g, h combination treatment with radiation 
(2 Gy per dose) and radiosensitizer (100 mg  kg−1 per dose). Treat-
ment was repeated 5 days a week for 6 weeks. Data are also shown in 
Appendix A (Fig. 8) using common volume and time scales
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changes in the tumor microenvironment caused by irradiation 
[19]. In particular, radiation is known to reduce vasculariza-
tion in the tumor and surrounding tissue, leading to hypoxia 
and reduced growth [30, 31]. It is noteworthy that both param-
eters related to radiation ( � and � ) were estimated with high 
precision, emphasizing the need for both short- and long-term 
effects to describe the data. In contrast to the proposed model 
that features permanent inhibition of growth, other models have 
featured a repair process of DNA damage [13, 14]. This was 
not possible to do with our model due to data showing no signs 
of recovery in growth rate, which makes it similar to a model 
reported by Querdani et al. that employs a permanent inhibition 
of vascularization after administration of the drug Pazopanib 
to describe long-term treatment effects on tumor volume [25]. 
Unlike the radiation models mentioned above, the proposed 
model also accounts for combinations with radiosensitizing 
treatments. This is described generically as an enhancement 
of the radiation effects. The presence of a radiosensitizer will, 
therefore, lead to the same tumor evolution as if a higher dose of 
radiation had been administered. The radiosensitizer parameters 
( a and b ) were estimated with worse precision than the other 
parameters. This is likely due to the large variability in radiation 
effects, which makes it more difficult to quantify the differences 
between radiation and combination treatments.

Tumor static exposure

Tumor static exposure is an important concept that can be 
used for single-agent treatment as well as combination thera-
pies [15, 16, 20, 26, 27]. Historically, TSE values and TSE 
curves are used to predict the required exposures for tumor 
regression, although they have also been used for in vitro–in 
vivo correlations [31]. The first TSE concept described net 
growth rate at an arbitrary time point [16, 20]. This means 
that in order for the tumor to shrink, concentrations need to 
be maintained above the TSE curve for a prolonged period 
of time. Another type of TSE curve featured a daily perspec-
tive [15]. The radiation dose is the daily radiation dose and 
the plasma concentration is the daily average, and if expo-
sure above the TSE curve is maintained over many days, the 
tumor will shrink. Finally, the TSE curve presented in this 
analysis (Eq. 11) examines permanent inhibition of growth. 
The radiation dose is the total radiation dose and radiosensi-
tizer concentration is the concurrent plasma concentration at 
each instance of irradiation. All three TSE concepts describe 
treatments with one adjustable feature (the minimum, aver-
age, or total exposure) with the common objective of achiev-
ing tumor regression while putting low metabolic pressure 
on the animal.

Figure 5 shows how the net growth dynamically changes 
over time depending on treatment. The figure serves as a 
precursor to TSE, since it is based on the same expression, 
i.e., the net growth rate (Eq. 9). The projected changes in 

growth rate for the different treatment groups (A–D) show 
whether or not the corresponding dosing schedule will result 
in exposure above TSE (i.e., tumor shrinkage) or below TSE 
(i.e., tumor growth). In Fig. 5, this means that vehicle and 
radiation treatment must fall below the TSE curve, whereas 
combination treatment with the radiosensitizer results in a 
negative net growth rate and must, therefore, correspond to 
exposures above the TSE curve. Moreover, Fig. 5 shows the 
predicted net growth rates beyond simply whether or not 
the rate will be negative, which is similar to the heat map 
in Fig. 7 (right).

The TSE curve in Fig. 6 has a pronounced curvature, 
which shows that the total radiation dose can be signifi-
cantly decreased if combined with radiosensitizing treat-
ment. When radiation is given alone, the TSE prediction 
is that 110 Gy is needed to eradicate the tumor. This is 
consistent with experiments using the same cell line, which 
puts the required dose between 100 and 120 Gy [32, 33]. 
The TSE curve in Fig. 6 is based on the median individual, 
which means that, in a heterogeneous population, approxi-
mately half of the individuals will need exposures above 
TSE to achieve tumor regression. This is why mixed-effects 
modeling, which quantifies between-subject variability, is 
important. The individual TSE curves (Fig. 7, left) make 
it possible to target tumor regression for a large percent-
age of the population, e.g., Fig. 7 predicts that for radia-
tion treatment alone to achieve tumor eradication in the 
majority of the population, the required dose would be 
around 160 Gy. The heat map (Fig. 7, right) can be seen as 
a generalization of the TSE concept. TSE divides exposure 
into tumor growth and tumor shrinkage, whereas the heat 
map shows the resulting growth rate or shrinkage rate for 
different levels of exposure. In particular,  TSEdV curves 
corresponding to different growth rates need not have the 
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Fig. 5  Evolution of net growth rate ( knet ) over time due to radio-
chemical inhibition of growth for the following four treatment groups: 
(A) vehicle, (B) radiation treatment (2  Gy per dose), (C) radiation 
(2 Gy per dose) and radiosensitizer (25 mg kg−1 per dose) combina-
tion treatment, and (D) radiation (2 Gy per dose) and radiosensitizer 
(100 mg kg−1 per dose) combination treatment
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same curvatures and the degree of synergy may, therefore, 
vary for different shrinkage rates (Fig. 7 black, dashed). 
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Fig. 6  (Left) The TSE curve for radiation and radiosensitizer com-
binations is shown in blue. Exposure pairs (total radiation doses and 
concurrent plasma concentrations) above the curve (green area) will 
result in tumor regression and eradication, whereas exposure pairs 

below the curve (red area) are insufficient for regression and the 
tumor will continue to grow. (Right) Simulated tumor growth given 
three different exposure pairs (A, B, and C) marked in the TSE plot: 
A leads to tumor growth, B to tumor stasis, and C to tumor shrinkage

Fig. 7  (Left) Variability in TSE among the population. Each curve 
(blue) corresponds to the TSE for a specific individual, based on the 
EBEs obtained from mixed-effects modeling. The median TSE curve 
is shown in red. (Right) Heat map of the net tumor growth rate after 
combination treatment with radiation and radiosensitizer for the 

median individual. The TSE curve from Fig.  5 is shown in black. 
Dashed lines indicate growth rates of 0.1  h−1 (corresponding to a 
doubling time of about 7 days) and − 0.1 h−1 (corresponding to a half 
time of about 3 days), respectively

This is consistent with the idea that drug synergies can be 
exposure-dependent [6].
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Applications and translation to humans

The proposed model can be used for radiation in combina-
tion with a range of chemical interventions. This includes 
immunotherapy, which is becoming increasingly important 
in oncology [34], as well as compounds that target DNA 
repair and replication stress [35]. The model is relatively 
simple and can be calibrated using data from the standard 
xenograft experiments. The model and the TSE concept 
have multiple applications. A typical application is to gen-
erate treatment predictions for different dosing schedules. 
The TSE curve itself is also a prediction and attempts to 
answer the question “how much exposure is needed for 
tumor shrinkage?”. The TSE curve can be used to determine 
drug synergies, which are related to the curvature, with syn-
ergy resulting in an inward curvature, whereas antagonism 
gives an outward curvature [16]. TSE can also be used as a 
basis for comparing and ranking compounds and combina-
tions during drug discovery (Cardilin et al. 2019, preprint). 
Finally, the model and TSE have translational potential [36].

Translational models are an important tool in drug 
development, but must account for species differences in 
pharmacokinetics as well as pharmacodynamics [6]. If 
there are no available data on human pharmacokinetics, 
a standard approach is to employ allometric scaling [37]. 
Wong et al. compared the treatment response in subcutane-
ous mouse models with the clinical response and found a 
correlation only when the quantitative tumor models were 
driven by human pharmacokinetics [38]. Mager et al. note 
that turnover rates are typically allometrically scalable, 
whereas capacity and sensitivity parameters often remain 
the same across species [39]. However, higher energy 
turnover in smaller animals to maintain 37 °C may affect 
target turnover and, therefore, also in vivo potency [40]. 
Moreover, hyper-inflammation cancerous states affect pro-
tein synthesis and degradation, and can, therefore, also 
impact potency [41]. Gabrielsson et al. have pointed out 
how differences in drug-target binding, target turnover, 
and drug partitioning can help explain differences across 
species [42]. An allometric scaling approach showed that 
if only the system rate parameters ( kg and kk ) are scaled, 
the TSE curve does not change, although the tumor growth 
trajectories are affected [36]. More precisely, TSE only 
depends on the quotient kg∕kk , which does not change if 
kg and kk are both scaled. However, the difference kg − kk 
will be affected by scaling and the tumor will, therefore, 
grow slower in a larger animal (e.g., a human). The situa-
tion becomes considerably more complicated if drug and 
radiation parameters are also expected to vary across spe-
cies and can lead to TSE curves corresponding to much 
greater exposure levels and different curvatures/drug syn-
ergy. A first step could be to investigate the sensitivity of 

the TSE curve to changes in drug/radiation parameters (see 
Appendix A, Fig. 11).

Conclusions

The tumor model for treatment with radiation and radio-
sensitizing agents that we present can describe long-term 
treatment effects including tumor regrowth and tumor 
eradication. The model can be calibrated using tumor vol-
ume data obtained from standard xenograft studies. The 
TSE concept is extended to determine combinations of 
radiation dose and radiosensitizer concentrations that lead 
to tumor eradication. TSE is also extended by means of a 
heat map that provides information about the rate at which 
tumor growth or tumor regression is occurring.

To further establish applicability, the tumor model, as 
well as the TSE concept and heat map, should be challenged 
by data from different studies, using different types of radio-
sensitizers and different radiation doses. It is also important 
to test how the model translates to the clinic, e.g., how well 
the predicted TSE curves hold in a clinical setting.
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Fig. 8  Examples of time courses of tumor evolution and model 
predictions based on the model in Eq.  5 and the parameters from 
Table 1: a, b vehicle, c, d radiation (2 Gy per dose), e, f combination 
treatment with radiation (2 Gy per dose) and radiosensitizer (25 mg 

 kg−1 per dose), and g, h: combination treatment with radiation (2 Gy 
per dose) and radiosensitizer (100 mg kg−1 per dose). Treatment was 
repeated 5 days a week for 6 weeks. The figure is a version of Fig. 3 
with the same time and volume scales for all individuals
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Fig. 9  Visual predictive checks 
for each of the four treatment 
groups: a vehicle, b radiation 
treatment with 2 Gy per dose, 
c combination treatment with 
2 Gy radiation and 25 mg kg−1 
radiosensitizer per dose, and d 
combination treatment with 2 
Gy radiation and 100 mg kg−1 
radiosensitizer per dose. Shaded 
regions indicate 90% confidence 
intervals obtained by simulating 
1000 studies according to the 
model (Eq. 5) and the parameter 
estimates in Table 1, for the 
10th, 50th (median), and 90th 
percentiles. Observed medians 
are drawn in black solid lines, 
and observed 10th and 90th per-
centiles in black, dashed lines

Fig. 10  EBEs for each of the 
parameters V0, � , and � (1, 2, 
and 3, respectively) for each 
of the four treatment groups: 
vehicle (blue), radiation (red), 
radiation and 25 mg kg−1 radio-
sensitizer (green), and radiation 
and 100 mg kg−1 radiosensitizer 
(purple). Shrinkage can be seen 
in the parameter � (2) for the 
last group (purple) due to all 
tumors being eradicated in that 
group
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