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Parameter Estimation for Nonlinear Mixed 
Effects Models Implemented in Mathematica

Background

In many applications within biology and 
medicine, measurements are gathered from 
several entities in the same experiment. This 
could for example be patients exposed to a 
treatment or cells measured after stimuli.

To characterize the variability in response 
between entities, the nonlinear mixed effects 
(NLME) model is a suitable statistical model. An 
NLME model enables quantification of both 
within- and between subject variability. 

The parameter estimation in NLME models is 
not straightforward, due to the intractable 
expression of the likelihood function.

In this work we present a Mathematica package 
for parameter estimation in NLME models 
where the longitudinal model is defined by 
differential equations. The parameter 
estimation problem is solved by the first-order 
conditional estimation (FOCE) method with 
exact gradients. The package is demonstrated 
using data from a simulated drug concentration 
model.

Statistical model

The dynamical model for an individual is 
defined by a system of ODEs

𝑑𝒙𝑖
𝑑𝑡

= 𝒇 𝒙𝑖 , 𝒖𝑖 , 𝑡, 𝝓𝑖 , 𝒙𝑖 𝑡0 = 𝒙0(𝝓𝒊)

together with an observation model

𝒚𝑖𝑗 = 𝒉 𝒙𝑖𝑗 , 𝒖𝑖 , 𝑡𝑖𝑗 , 𝝓𝑖 + 𝒆𝑖𝑗 , 𝒆𝑖𝑗~𝑁 𝟎, 𝚺

The individual parameters 𝝓𝑖 are linked to 
population parameters by a functional 

relationship 𝝓𝑖 = 𝑔 𝜽𝒑𝒐𝒑, 𝜼𝑖 with the random 

effects 𝜼𝑖~𝑁(𝟎,𝜴).

Extension to a longitudinal model described by 
stochastic differential equations (SDEs) is also 
supported. 

Parameter estimation

The aim is to estimate the model parameters

𝜽 = 𝜽𝒑𝒐𝒑, 𝜴, 𝚺 from a set of observations

𝒅𝑖𝑗 , 𝑖 = 1,… ,𝑁, 𝑗 = 1,… , 𝑛𝑖.  

Since the random effects 𝜼𝑖 are unobserved, the 
joint probability distribution is marginalized over the 
unobserved quantities to obtain the likelihood 
function.
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Due to the normality assumptions in the model we 
have
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with residual 𝜺𝑖𝑗 = 𝒅𝑖𝑗 − 𝒉 𝒙𝑖𝑗 , 𝒖𝑖 , 𝑡𝑖𝑗 , 𝝓𝑖 .

Since the integral over exp(𝑙𝑖) is problematic, the 
integral is approximated using a second order Taylor 
expansion of 𝑙𝑖, which yields the objective function
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where the point 𝜼𝑖
∗ = 𝜼𝑖

∗(𝜽) is the value maximizing 
𝑙𝑖 (for a fixed 𝜽). This leads to a nested optimization 
problem which is computationally demanding. 

The Hessian Δ𝑙𝑖 can further be simplified to give the 
so called first order conditional estimation (FOCE) 
approximation.

Exact gradients 

• A quasi-Newton method with a finite difference 
approximation of the gradient has traditionally 
been used to compute the maximum likelihood 
estimate.

• In this work, we use sensitivity equations to 
compute exact gradients for the optimization of 
𝐿 𝜽 and 𝜼𝑖

∗.

• The ODE system is differentiated with respect to 
the model parameters to obtain the sensitivity 
equations [1,2].

• Exact gradients enable faster and more robust 
optimization compared to finite differences, and 
have been implemented in the NLME software 
NONMEM 7.4 [3].

• The package has previously been used in several 
applications, see [4,5,6].

Modeling workflow

The measurements are collected as a list of time-
value pairs with easy-to-use plotting tools 
available.

The NLME model is defined by an ODE system 
and an observation model.

The estimation requires dataset, model and initial 
guesses for the population parameters: 

Several options are available:

The optimization returns an object which 
contains the estimated model, including 
parameter estimates and optimization history.

The model object can be used for easy plotting of 
predictions
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Summary and conclusions

• A Mathematica package for parameter 
estimation in nonlinear mixed effects 
models has been implemented and 
demonstrated.

• The package enables easy-to-use NLME 
modeling, is free, and can be further 
demonstrated upon request.
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