61 research outputs found
Extracellular Vesicles in the Oviduct: Progress, Challenges and Implications for the Reproductive Success
The oviduct is the anatomical part of the female reproductive tract where the early reproductive events take place, from gamete transport, fertilization and early embryo development to the delivery of a competent embryo to the uterus, which can implant and develop to term. The success of all these events rely upon a two-way dialogue between the oviduct (lining epithelium and secretions) and the gametes/embryo(s). Recently, extracellular vesicles (EVs) have been identified as major components of oviductal secretions and pointed to as mediators of the gamete/embryo-maternal interactions. EVs, comprising exosomes and microvesicles, have emerged as important agents of cell-to-cell communication by the transfer of biomolecules (i.e., mRNAs, miRNAs, proteins) that can modulate the activities of recipient cells. Here, we provide the current knowledge of EVs in the oviductal environment, from isolation to characterization, and a description of the EVs molecular content and associated functional aspects in different species. The potential role of oviductal EVs (oEVs) as modulators of gamete/embryo-oviduct interactions and their implications in the success of early reproductive events is addressed. Lastly, we discuss current challenges and future directions towards the potential application of oEVs as therapeutic vectors to improve pregnancy disorders, infertility problems and increase the success of assisted reproductive technologies
Oviductal Extracellular Vesicles Enhance Porcine In Vitro Embryo Development by Modulating the Embryonic Transcriptome
Oviductal extracellular vesicles (oEVs) have been identified as important components of the oviductal fluid (OF) and have been pointed to as key modulators of gamete/embryo-maternal interactions. Here, we determined the functional impact of oEVs on embryo development and the embryonic transcriptome in porcine. Experiment 1 examined the effect of oEVs and OF on embryo development. In vitro-produced embryos were cultured with oEVs or OF for 2 or 7 days using an in vitro sequential system or without supplementation (control). Experiment 2 analyzed transcriptomic alterations of EV-treated embryos versus control and the oEVs RNA cargo by RNA-sequencing. Two days of EV treatment enhanced embryo development over time when compared to other treatments. Different RNA expression profiles between embryos treated with EVs for two or seven days and untreated controls were obtained, with 54 and 59 differentially expressed (DE) genes and six and seven DE miRNAs, respectively. In oEV RNA cargo, 12,998 RNAs and 163 miRNAs were identified. Integrative analyses pointed to specific oEV components that might act as modulators of the embryonic transcriptome, such as S100A11, ANXA2 or miR-21-5p. Overall, the findings suggested that oEVs could be a potential strategy to improve porcine IVP outcomes, particularly by using two days of EV treatment
Dynamic regulation of the transcriptome and proteome of the equine embryo during maternal recognition of pregnancy
During initial maternal recognition of pregnancy (MRP), the equine embryo displays a series of unique events characterized by rapid blastocyst expansion, secretion of a diverse array of molecules, and transuterine migration to interact with the uterine surface. Up to date, the intricate transcriptome and proteome changes of the embryo underlying these events have not been critically studied in horses. Thus, the objective of this study was to perform an integrative transcriptomic (including mRNA, miRNAs, and other small non-coding RNAs) and proteomic analysis of embryos collected from days 10 to 13 of gestation. The results revealed dynamic transcriptome profiles with a total of 1311 differentially expressed genes, including 18 microRNAs (miRNAs). Two main profiles for mRNAs and miRNAs were identified, one with higher expression in embryos ≤5 mm and the second with higher expression in embryos ≥7 mm. At the protein level, similar results were obtained, with 259 differentially abundant proteins between small and large embryos. Overall, the findings demonstrated fine-tuned transcriptomic and proteomic regulations in the developing embryo associated with embryo growth. The identification of specific regulation of mRNAs, proteins, and miRNAs on days 12 and 13 of gestation suggested these molecules as pivotal for embryo development and as involved in MRP, and in establishment of pregnancy in general. In addition, the results revealed new insights into prostaglandin synthesis by the equine embryo, miRNAs and genes potentially involved in modulation of the maternal immune response, regulation of endometrial receptivity and of late implantation in the mare
Uterine extracellular vesicles as multi-signal messengers during maternal recognition of pregnancy in the mare
In contrast to other domestic mammals, the embryo-derived signal(s) leading to maternal recognition of pregnancy (MRP) are still unknow in the mare. We hypothesize that these embryonic signals could be packed into uterine extracellular vesicles (uEVs), acting as multi-signal messengers between the conceptus and the maternal tract, and contributing to MRP. To unveil these signals, the RNA and protein cargos of uEVs isolated from uterine lavages collected from pregnant mares (P; day 10, 11, 12 and 13 after ovulation) and cyclic control mares (C; day 10 and 13 after ovulation) were analyzed. Our results showed a fine-tuned regulation of the uEV cargo (RNAs and proteins), by the day of pregnancy, the estrous cycle, and even the size of the embryo. A particular RNA pattern was identified with specific increase on P12 related to immune system and hormonal response. Besides, a set of proteins as well as RNAs was highly enriched in EVs on P12 and P13. Differential abundance of miRNAs was also identified in P13-derived uEVs. Their target genes were linked to down- or upregulated genes in the embryo and the endometrium, exposing their potential origin. Our study identified for first time specific molecules packed in uEVs, which were previously associated to MRP in the mare, and thus bringing added value to the current knowledge. Further integrative and functional analyses will help to confirm the role of these molecules in uEVs during MRP in the mare
Oviductal extracellular vesicles miRNA cargo varies in response to embryos and their quality
BACKGROUND: Increasing evidence points to an active role of oviductal extracellular vesicles (oEVs) in the early embryo-maternal dialogue. However, it remains unclear whether oEVs contribute to the recognition of the presence of embryos and their quality in the oviduct. Hence, we examined whether the molecular cargo of oEVs secreted by bovine oviduct epithelial cells (BOEC) differs depending on the presence of good (≥ 8 cells, G) or poor (< 8 cells, P) quality embryos. In addition, differences in RNA profiles between G and P embryos were analyzed in attempt to distinguish oEVs and embryonic EVs cargos.
METHODS: For this purpose, primary BOEC were co-cultured with in vitro produced embryos (IVP) 53Â h post fertilization as follows: BOEC with G embryos (BGE); BOEC with P embryos (BPE); G embryos alone (GE); P embryos alone (PE); BOEC alone (B) and medium control (M). After 24Â h of co-culture, conditioned media were collected from all groups and EVs were isolated and characterized. MicroRNA profiling of EVs and embryos was performed by small RNA-sequencing.
RESULTS: In EVs, 84 miRNAs were identified, with 8 differentially abundant (DA) miRNAs for BGE vs. B and 4 for BPE vs. B (P-value < 0.01). In embryos, 187 miRNAs were identified, with 12 DA miRNAs for BGE vs. BPE, 3 for G vs. P, 8 for BGE vs. GE, and 11 for BPE vs. PE (P-value < 0.01).
CONCLUSIONS: These results indicated that oEVs are involved in the oviductal-embryo recognition and pointed to specific miRNAs with signaling and supporting roles during early embryo development
Characterization of oviduct epithelial spheroids for the study of embryo-maternal communication in cattle
Most in vitro models of oviduct epithelial cells (OEC) used thus far to gain insights into embryo-maternal communication induce cell dedifferentiation or are technically challenging. Moreover, although the presence of developing embryos has been shown to alter gene expression in OEC, the effect of embryos on OEC physiology remains largely unknown. Here, we propose a model based on bovine oviduct epithelial spheroids (OES) with specific shape and diameter (100-200Â ÎĽm) criteria. The aims of this study were to i) determine the appropriate culture conditions of bovine OES cultured in suspension by evaluating their morphology, total cell number, viability, and activity of ciliated cells; ii) monitor gene expression in OES at the time of their formation (day 0) and over the 10 days of culture; and iii) test whether the vicinity of developing embryos affects OES quality criteria. On day 10, the proportions of vesicle-shaped OES (V-OES) were higher in M199/500 (500Â ÎĽl of HEPES-buffered TCM-199) and synthetic oviduct fluid (SOF)/25 (25-ÎĽL droplet of SOF medium under mineral oil) than in M199/25 (25-ÎĽL droplet of M199 under mineral oil). The proportion of viable cells in V-OES was not affected by culture conditions and remained high (>80%) through day 10. The total number of cells per V-OES decreased over time except in SOF/25, while the proportions of ciliated cells increased over time in M199/500 but decreased in M199/25 and SOF/25. The movement amplitude of OES in suspension decreased over time under all culture conditions. Moreover, the gene expression of ANXA1, ESR1, HSPA8, and HSPA1A in OES remained stable during culture, while that of PGR and OVGP1 decreased from day 0 to day 10. Last, the co-culture of developing embryos with OES in SOF/25 increased the rates of blastocysts on days 7 and 8 compared to embryos cultured alone, and increased the proportion of V-OES compared to OES cultured alone. In conclusion, M199/500 and SOF/25 provided the optimal conditions for the long-time culture of OES. The supporting effect of OES on embryo development and of developing embryos on OES morphology was evidenced for the first time. Altogether, these results point OES as an easy-to-use, standardizable, and physiological model to study embryo-maternal interactions in cattle
Implementació i pilotatge de l'entorn virtual d'aprenentatge Quantum LEAP (Learning English for Academic Purposes), com a eina per a la millora de la comunicació acadèmica en anglès a la UPC
Aquest projecte forma part d’un treball més ampli que està duent a terme un
equip interuniversitari d'innovaciĂł docent, amb seu a la UPC, que treballa en el
desenvolupament de Quantum LEAP (Learning English for Academic
Purposes, un entorn virtual d'aprenentatge d'anglès acadèmic a la universitat,
que contè una gran quantitat i varietat de materials interactius multimèdia pel
desenvolupament de la comprensió i expressió oral i escrita en anglès. Amb
aquest projecte es dĂłna resposta a necessitats clau de la universitat actual
respecte a les competències de llengua i comunicació (diferents nivells de
competència en anglès i diferents estils d’aprenentatge, millorar l’aprenentatge i
prĂ ctica de l’anglès acadèmic, per exemple). El context actual estĂ
caracteritzat per una major mobilitat acadèmica i profesional, una major
presencia de l’anglès com a lingua franca, i una ja plena implantació de l’EEES
(Espai Europeu d’Educació Superior) amb èmfasi en els processos
d’aprenentatge, l’adquisició de competències i l’aprenentatge autònom. Tenint Institut de Ciències de l’Educació – Universitat Politècnica de Catalunya
2
en compte aquest context i el grau de desenvolupament de Quantum LEAP, en
aquest projecte s’ha treballat en la revisió dels materials didà ctics, en la
implementació de l’entorn d’aprenentatge a l’aula i com a recurs per aprenents
autònoms, i s’ha dut a terme una profunda revisió tècnica i de disseny, per tal
d’adaptar-lo a criteris pedagògics i d’usabilitat.Peer Reviewe
Comparative biological properties and mineralization potential of three endodontic materials for vital pulp therapy: Theracal PT, Theracal LC, and Biodentine on human dental pulp stem cells (hDPSCs)
Introduction: The aim of this study was to assess the biological properties and mineralization potential of the new Theracal PT (Bisco Inc, Schaumburg, IL) compared with its predecessor Theracal LC (Bisco Inc) and the hydraulic silicate-based cement Biodentine (Septodont, Saint-Maur-des-Fosses, France) on human dental pulp stem cells (hDPSCs) in vitro. Methods: Standardized sample discs were obtained for each material (n 5 30) together with 1:1, 1:2, and 1:4 material eluates. Previously characterized hDPSCs were cultured with the different materials in standardized conditions, and the following assays were performed: a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, a wound healing assay, Annexin-V-FITC and 7-AAD staining (BD Biosciences, San Jose, CA), reactive oxygen species production analysis, cell adhesion and morphology evaluation via scanning electron microscopy and immunofluorescence, quantification of the expression of osteo/odontogenic markers via real-time quantitative reverse-transcriptase polymerase chain reaction, and alizarin red S staining. Statistical significance was established at P , .05. Results: All of the tested dilutions of Theracal LC exhibited a significantly higher cytotoxicity and reactive oxygen species production (P , .001) and a lower cell migration rate than the control group (hDPSCs cultured in growth medium without material extracts) at all of the measured time points (P , .001). Both 1:4 Theracal PT and Biodentine-treated hDPSCs exhibited similar levels of cytocompatibility to that of the control group, a significant up-regulation of at least 1 odontogenic marker (Biodentine: dentin sialophosphoprotein (P , .05); Theracal PT: osteonectin and runt-related transcription factor 2 [P , .001]), and a significantly higher mineralized nodule formation (P , .001). Conclusions: The newly introduced TheraCal PT offers an improved in vitro cytocompatibility and mineralization potential on hDPSCs compared with its predecessor, TheraCal LC, and comparable biological properties to Biodentin
Early Developing Pig Embryos Mediate Their Own Environment in the Maternal Tract
The maternal tract plays a critical role in the success of early embryonic development providing an optimal environment for establishment and maintenance of pregnancy. Preparation of this environment requires an intimate dialogue between the embryo and her mother. However, many intriguing aspects remain unknown in this unique communication system. To advance our understanding of the process by which a blastocyst is accepted by the endometrium and better address the clinical challenges of infertility and pregnancy failure, it is imperative to decipher this complex molecular dialogue. The objective of the present work is to define the local response of the maternal tract towards the embryo during the earliest stages of pregnancy. We used a novel in vivo experimental model that eliminated genetic variability and individual differences, followed by Affymetrix microarray to identify the signals involved in this embryo-maternal dialogue. Using laparoscopic insemination one oviduct of a sow was inseminated with spermatozoa and the contralateral oviduct was injected with diluent. This model allowed us to obtain samples from the oviduct and the tip of the uterine horn containing either embryos or oocytes from the same sow. Microarray analysis showed that most of the transcripts differentially expressed were down-regulated in the uterine horn in response to blastocysts when compared to oocytes. Many of the transcripts altered in response to the embryo in the uterine horn were related to the immune system. We used an in silico mathematical model to demonstrate the role of the embryo as a modulator of the immune system. This model revealed that relatively modest changes induced by the presence of the embryo could modulate the maternal immune response. These findings suggested that the presence of the embryo might regulate the immune system in the maternal tract to allow the refractory uterus to tolerate the embryo and support its development
Extracellular vesicles: Multi-signal messengers in the gametes/embryo-oviduct cross-talk
Extracellular vesicles (EVs) have emerged as novel cell-to-cell communication mediators in physiological and pathological scenarios. Their ability to transfer their molecular cargo (RNAs, proteins and lipids) from one cell to another, in the vicinity or far from the cell of origin, together with their capacity of exerting a functional impact on the target cell make them valuable diagnostic tools as well as therapeutic vectors in a variety of diseases. In the reproductive field, there is a growing interest in the role of EVs in gamete/embryo-maternal communication and their potential implications in the reproductive success. In this review, we provide current knowledge of EVs secreted by the oviduct (oEVs) and embryos (eEVs), since both have been proposed as key players in the crucial two-way dialogue between the oviduct (lining epithelium and secretions) and the embryo that ensures successful pregnancy. Both oEVs and eEVs molecular cargos and their potential role as multi-signal messengers in the gametes/embryo-oviduct cross-talk and in the embryo-to-embryo communication in different species are also addressed. Eventually, a comparative analysis between oEVs and eEVs has been performed to shed some light on common and specific cargos responsible for their functions supporting the early reproductive events and as prime candidate molecules for improving fertility and assisted reproductive technologies outcomes
- …