10 research outputs found

    Diseño, según estados límites, de estructuras de hormigón armado con redondos de fibra de vidrio GFRP

    Full text link
    Desde la aparición de los redondos de fibra de vidrio como armado del hormigón, las recomendaciones existentes sobre su uso, están en continua revisión al tratarse de un material innovador en el mundo de la ingeniería. Sin embargo, todos los códigos y guías de diseño existentes de elementos de hormigón armado con redondos de GFRP, no consideran en el diseño la resistencia a compresión de los redondos, al no existir métodos de ensayos contrastados, ni resultados homogéneos en los mismos, despreciándose su contribución debido a su bajo módulo de elasticidad, y a consideraciones económicas injustificables. Esta tesis se centra en definir un método de diseño y cálculo de elementos de hormigón armado con redondos de fibra de vidrio, incluyendo su uso como armadura a compresión, así como su posible resistencia frente al fuego. La tesis presenta una metodología adecuada a una investigación de los elementos de hormigón armado con este tipo de redondos, basándose principalmente en una amplia base experimental. Se realiza una recopilación bibliográfica y una elaboración de un estado del arte de las aplicaciones de los redondos de FRP como armado del hormigón, y de las directrices existentes en cada uno de los códigos o guías vigentes. Tras ello, se recoge el proceso y los resultados de los trabajos experimentales de los ensayos de tracción, compresión, cortante y adherencia ejecutados a las probetas de fibra de vidrio RTHp, con el fin de obtener de sus características mecánicas, para posteriormente lograr su ratificación por el CSIC, a través del Instituto "Eduardo Torroja", dando pie a la comprobación de su uso como armadura a compresión en elementos de hormigón armado. Conocido el comportamiento de los redondos, se elabora unas directrices de diseño para elementos de hormigón armado bajo estados limites, cumpliendo con los preceptos marcados por la EHE-08 con respecto a la compatibilidad de tensiones y deformaciones.Almerich Chulia, AI. (2011). Diseño, según estados límites, de estructuras de hormigón armado con redondos de fibra de vidrio GFRP [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/9744Palanci

    A singular structure: Monopost made in composites

    Full text link
    p. 3002-3012This work presents the design process, the analysis, and the performance of a cylindrical hollow monopost, made entirely in composites. It is about a translucent structure of height 40m, external diameter 1.60m and the average wall-thickness 11mm. The material is a polymer made up of vinylster resin and reinforced by glass fiber (GFRP). The manufactured processing used is filament winding. Moreover, due to geographical emplacement where it is situated, the structure has to support wind velocity value above 180Km/h and its elastic modulus of the material does not exceed 25GPa. Eventually, we was able to achieve an optimum solution and strentgh structure, considering and developing differents types of approaches and analysis, such as linear, non-linear and buckling.Rovira, JA.; Martin, P.; Pons, D.; Almerich Chulia, AI. (2009). A singular structure: Monopost made in composites. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/670

    GFRP Bar: Determining Tensile Strength with Bending Test

    Full text link
    In order to obtain GFRP reinforcement bars it is necessary to undertake tests regulated code which require important mechanical tools. This paper presents a method which allows for determining GFRP rebars tensile strength value from their flexural strength value which has been obtained with a simple, inexpensive and reliable test. This method results will be verified by applying it to values obtained in a series of bending tests and comparing these results with values obtained in tensile tests. Values concordance for small diameter GFRP rebars is very good.Almerich Chulia, AI.; Fenollosa Forner, EJ.; Cabrera Fausto, I. (2015). GFRP Bar: Determining Tensile Strength with Bending Test. Advanced Materials Research. 1083:90-96. doi:10.4028/www.scientific.net/AMR.1083.90S90961083A.I. Almerich Chulia. Diseño, según Estados Limites, de Estructuras de Hormigon Armado Con Redondos de Fibra de Vidrio GFRP,. Thesis, Universidad Politecnica de Valencia, Valencia, Spain (2010).UNE 83306: 1985 Concrete tests. Indirect tension failure (Brazilian test).UNE-EN 14651: 2007+A1: 2008. Test method for concrete with metallic fibers. Tensile strength determining by means of bending test (Limit of Proportionality (LOP), residual strength).UNE-EN ISO 178 Plastics: Flexural properties determining.UNE-EN 13706-2: 2003. Reinforced plastics composites - Specifications for pultruded profiles - Part 2: Methods of test and general requirements.UNE 66040: 2003 Statistical interpretation of test results. Estimation of the mean. Confidence interval..A.I. Almerich-Chulia et al., Innovative Design of GFRP Bars for Concrete Structures,. Advanced Materials Research, 457-458, 553 (2012)

    Non-linear analysis of rheological effects in slender composite columns

    Full text link
    [EN] A thorough analysis of slender columns under axial force and bending moment requires second order effects assessment. Concrete s creep is one of the factors that increase lateral displacements of the bar in the long run. This phenomenon propitiates the instability and reduces its bearing capacity. This paper shows a procedure for assessing rheological effects based on Eurocode 2 method. This procedure will be added to structural analysis software which takes into consideration geometrical and mechanical non-linearity. As an example interaction diagrams for concrete-encased composite columns with different slenderness values are obtained. These diagrams will demonstrate that rheological effects have a greater influence as axial force eccentricity and slenderness values increase.Fenollosa Forner, EJ.; Cabrera Fausto, I.; Almerich Chulia, AI. (2014). Non-linear analysis of rheological effects in slender composite columns. Applied Mechanichs and Materials. 578-579:389-395. doi:10.4028/www.scientific.net/AMM.578-579.389S389395578-579Z. P. Bazant: Creep Stability and Buckling Strength of Concrete Columns. Magazine of Concrete Research. Vol. 20, nº 63. (1968), pp.85-94.Z.P. Bazant: Phenomenological theories for creep of concrete based on rheological models. Acta Technica CSAV. Nº 1 (1966), pp.82-109.Z. P. Bazant: Mathematical Modeling of Creep and Shrinkage of Concrete. Chapters 2 and 3. John Wiley and sons. New York (1988).A. Kawano and R. F. Warner: Model Formulations for Numerical Creep Calculations for Concrete. Journal of Structural Engineering (1996), pp.284-290.ANGLE. Structural Analysis Software for Finite Elements. Developed by A. Alonso. Department of Mechanics of the Continuous Medium and T. E. Universitat Politècnica de València.W. Mc Guire, R. Gallagher and R. Ziemian. Matrix structural analysis. New York: John Wiley & Sons, Inc. (2000).Asociación Española de Normalización y Certificación (AENOR) 1993. Eurocódigo 2: Proyecto de estructuras de hormigón. Parte 1-1: Reglas generales y reglas para edificación. Madrid: AENOR.Asociación Española de Normalización y Certificación (AENOR) 1996. Eurocodigo 3: Proyecto de estructuras de acero. Parte 1-1: Reglas generales y reglas para edificación. Madrid: AENOR.R. Duan, X. Huang and H. Zhang: Concrete Shrinkage and Creep Effect Prediction Model and the Influence Factors Analysis. Advanced Materials Research. Vols 756-759 (2013) p.2051-(2054).K.S. Virdi and P.J. Dowling: The Ultimate Strength of Composite Columns in Biaxial Bending. In: Proceedings of the institution of civil engineers, Part 2; 55: (1973) pp.251-72.J.Y.R. Yen: Quasi-Newton Method for Reinforced Concrete Column Analysis and Design. ASCE Journal Structural Engineering, 117(3) (1991), pp.657-66.E. Fenollosa and A. Alonso: Assessment of Materials Nonlinearity in Framed Structures of Reinforced Concrete and Composites. 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures. (2013) pp.898-906.E. Fenollosa and I. Cabrera: Analysis of Composite Section Columns Under Axial Compression and Biaxial Bending Moments. Structures and Architecture: Concepts, Applications and Challenges. Chapter 186. Taylor & Francis Group, London. (2013)

    Class B greenhouse model with double layer for Nordic European countries

    Full text link
    [EN] This paper presents functional and structural possibilities of Class B greenhouses, which has a film covered, for areas with extreme winter temperatures and heavy snow loads, which are typical of a Class A model (glass or rigid film covered). This greenhouse study covers from its analysis in the design phase to its correct operation after construction, breaking patterns set by European standard, due to the structural design of the greenhouse, providing new possibilities for this type B, restricted to a specific geographical area so far.We gratefully acknowledge INVERCA S.A for work and technical assistance, and provide data and information necessary after construction of the greenhouse.Rovira Soler, JA.; Martín Concepcion, PE.; Almerich Chulia, AI.; Molines Cano, JM. (2014). Class B greenhouse model with double layer for Nordic European countries. Advanced Materials Research. 1065-1069:1046-1051. doi:10.4028/www.scientific.net/AMR.1065-1069.1046S104610511065-1069K. Berna. Structural analysis of greenhouse: a case study in Turkey. Building and Environment Vol. 41 (2006), pp.864-871.J. Nebot, J. Rovira, J. Garro, J. Martin, A. Aguado, A. Bonilla, A. Alonso, A. Committee technical CEN nº 284 (1998).J. Bosco. Horticultura. Revista de Hortaliza, Flores y Plantas Ornamentales Vol. 6. (1992).EN13031-1. Greenhouse: Design and construction - Part 1: Commercial production greenhouses (2002).P. Martin. Invernaderos de cubierta flexible: modelización de la acción del viento. Thesis. Editorial UPV (2003).O. Yekutieli, L. Dubinski, I. Kleinmann. Analysis of forces acting due to strong wind loads on structure and cover of walk-in tunnel. International Conference and British-Israeli workshop on greenhouse technologies (1997), pp.53-61.A. Mistriotis, D. Briassoulis. Numerical estimation of the internal and external aerodynamic coefficients of a tunnel greenhouse structure with openings. Computers and Electronics in Agriculture Vol. 34 (2002), pp.191-205.D. Briassoulis. Mechanical design requirements for low tunnel biodegradable and conventional films. Biosystems Engineering Vol. 87 (2) (2004), pp.209-223.A. Robertson, P. Roux, J. Gratraud, G. Scarascia, S. Castellano, M. Dufresne de Virel, P. Palier. Wind pressures on permeably and impermeably-clad structures. Journal of Wind Engineering and Industrial Aerodynamics Vol. 90 (4-5) (2002)

    Análisis estructural de la Iglesia de San Esteban de Valencia. Propuesta de intervención mediante la utilización de redondos de fibra de vidrio

    Full text link
    Análisis estructural de un edificio histórico de sillería y fábrica de ladrillo, sometido a un estado de cargas que crean problemas estructurales. Tras el análisis, se realiza una propuesta de intervención con materiales de similares características que los existentes, a base de cal y polímeros de fibra de vidrio (composite).Structural analysis of a historic building of masonry and brick, under a state of loads that create structural problems. After analysis, it is proposed to make a proposal for intervention with materials of similar characteristics to the existing, as lime and composite (fiberglass polymer).Almerich Chulia, AI. (2015). Análisis estructural de la Iglesia de San Esteban de Valencia. Propuesta de intervención mediante la utilización de redondos de fibra de vidrio. http://hdl.handle.net/10251/58200.Archivo delegad

    La iglesia de los Santos Juanes como elemento estructurante del barrio del mercado de Valencia

    No full text
    El estudio de una fábrica cargada de historia, sus peculiaridades y la evidencia de un edificio con unas características que lo hacen único, impulsan a realizar un análisis constructivo y urbano de la Iglesia de los Santos Juanes de Valencia (España). Ha sido escenario de numerosos acontecimientos debido a su importante posición comercial. Por ello, sin dejar de lado el resto de particularidades que han acontecido al edificio y que definen en gran medida su personalidad y su configuración actual, se pretende atender al resto de rasgos que fijan su carácter y que permiten encuadrarlo en un lugar en concreto dentro de la ciudad. El presente artículo pretende discernir y analizar la evolución constructiva que ha tenido el templo desde sus orígenes hasta la actualidad, concretando cada una de las intervenciones y relacionándolas con las premisas históricas responsables, así como las consecuencias que ellas han tenido en el entorno urbano que le rodea

    Reinforced Lime Concrete with FRP: An Alternative in the Restoration of Architectural Heritage

    Full text link
    [EN] Reinforced concrete has been the material mainly used in the repair of traditional structures of historic buildings. However, since the end of the 20th century, it began to question its use, especially for damages arising from corrosion of steel. An alternative is lime concrete reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Current lime concrete provides a high compressive strength and prevent problems such as cement alkalinity. GFRP bars provide the necessary tensile strength. Its modulus of elasticity and adhesion, improved by various mechanisms, allows good compatibility with concrete lime. Mechanical characteristics of the mixture are studied together to withstand the tensions and compressions in historic buildings. This new material is progressively replacing to Portland cement in the restoration of architectural heritage.Almerich Chulia, AI.; Fenollosa Forner, EJ.; Martín Concepcion, PE. (2016). Reinforced Lime Concrete with FRP: An Alternative in the Restoration of Architectural Heritage. Applied Mechanics and Materials (Online). 851:751-756. doi:10.4028/www.scientific.net/AMM.851.751S75175685

    Fire Endurance of Concrete Elements Reinforced With GFRP Bars

    Full text link
    [EN] Fire engineering is primarily to prevent loss of life or injury during a fire. Obviously the best way to achieve this is to prevent ignition, minimizing fire spread and smoke, dying the fire before it has fully developed. When this is not possible, when the fire is fully developed, structural elements must guarantee sufficient fire resistance. If containment methods fail, structural integrity must stay for a period long enough to evacuate occupants and firemen put out it. This investigation studies the bearing capacity of GFRP reinforced concrete element, its fire resistance, variations of its mechanics characteristics and its bonding to concrete when temperature rises, together others changes that may occur in the element.Almerich Chulia, AI.; Molines Cano, JM.; Martín Concepcion, PE.; Rovira Soler, JA. (2013). Fire Endurance of Concrete Elements Reinforced With GFRP Bars. Advanced Materials Research. 651:181-186. doi:10.4028/www.scientific.net/AMR.651.181S181186651FARDIS M.N.; KHALILI, H. Concrete encased in fibreglass-reinforced plastic,. ACI Journal Vol. 78 (38) pp.440-446. (1981).TANANO, H.; MASUDA, Y; TOMOSAWA, F. Characteristics and performance evaluation methods of continuous fibre bars – state of the art studies on fire properties and durability of continuous fibre reinforced concrete in Japan,. Proceedings 4th International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, pp.523-531.ROVIRA, J.A. Modelo teórico de secciones de hormigón armadas con redondos GFRP,. Universdad Politecnica de Valencia, Spain. (2009).ROVIRA, J. Barra a base de polímeros reforzados con fibras para el armado del hormigón,. Patente nº ES 2 235 011, (2010).ANDERBERG, Y. Spalling phenomena of HPC and OC,. NIST Workshop on fire performance of high strength concrete. Gaithersburg, Sweden. (1997).ALMERICH CHULIA, A. Diseño, según estados límites, de estructuras de hormigón armado con redondos de fibra de vidrio GFRP,. Tesis, Univ. Politécnica Valencia, Spain (2010)

    Innovative design of GFRP bars for Concrete Structures

    Full text link
    [EN] This part analyzed GFRP rebar's research situation, summarized its behaviuor as internal reinforcement for concrete structures. The research has been developed over recent years, however the rules and standard codes for design RC concrete structures with these rebars not consider that the internal reinforcement can work in compression. This paper presents the development of the research to get a new kind GFRP rebar for work as internal reinforcement of concrete structures, with an innovative design for work both in tension and compression, and their mechanical properties: strength, bond,.... © (2012) Trans Tech Publications.Almerich Chulia, AI.; Martín Concepcion, PE.; Molines Cano, JM.; Rovira Soler, JA. (2012). Innovative design of GFRP bars for Concrete Structures. Advanced Materials Research. 457-458:553-556. doi:10.4028/www.scientific.net/AMR.457-458.553S553556457-458Nanni, A. (ed. ) Fiber-Reinforced-Plastic (GFRP) Reinforcement for Concrete Structures: Properties and applications,. Elsevier Science. Developments in Civil Engineering, 42, p.450. (1993).Benmokrane, B.; Challal. O. Physical and mechanical performance of an innovative glass-fiber-reinforced plastic rod for concrete and grouted anchorages,. Canadian Journal Civil Engineering, 20, 254-268 (1993).Neale, K.W.; Labossière, P. (eds. ) Advanced composite materials on bridges and structures,. 1st Int. Conf. Sherbrooke, Quèbec, Canadian Society for Civil Engineering, 700 (1992).Nanni, A.; Dolan, C.W. ) (eds. ) Fiber-reinforced-plastic reinforcement for concrete structures, International Symposium,. American Concrete Institute (ACI), SP-138, 177 (1993).Dolan, C.W. FRP prestressing in the USA,. Concrete International 21(10), 21-24, (1999).Taerwe, L.R.; Matthys, S. FRP for concrete structures,. Concrete International 21(10), 33-36, (1999).Fukuyama, H. FRP composites in Japan,. Concrete International 21(10), 29-32 (1999).Rovira, J.A. Barra a base de polimero Barra a base de polímeros reforzados con fibras para el armado del hormigón,. Patente nº ES 2 235 011, (2010).Arteaga, A.; López, C.; Informe nº 19. 596-I. Ensayos de tracción, compresión y adherencia de redondos de materiales compuestos para su uso en hormigón". Instituto de ciencias de la Construcción "Eduardo Torroja, (IETcc), Madrid, Spain, (2009).Almerich Chulia, Ana-I. Diseño, según estados límites, de estructuras de hormigón armado con redondos de fibra de vidrio GFRP,. Tesis, Universidad Politécnica de Valencia, Valencia, Spain (2010)
    corecore