2 research outputs found

    Multiseasonal and geobotanical approach in remote detection of greisenization areas in the Serra da Pedra Branca Granite, Goias State, Brazil

    Get PDF
    Multiseasonal analysis of LANDSAT multispectral images in CCT format permitted the mapping of lithologic facies in the Pedra Branca Granite, using geobotanical associations, which occur in the form of variations in the density of cerrado vegetation, as well as the predominance of certain distinctive vegetation species. Dry season images did not show very good results in lithological differentiation due to anomalous illumination conditions related to the low solar elevation and the homogeneity in the vegetation cover, specially the grasses that become dry during this season. Rainy season image, on the other hand, allowed the separation of the lithological types, a fact that can be attributed to a greater differentiation among the geobotanical associations. As a result of this study, the muscovite-granite facies with greisenization zones, which are lithological indicators of important tin mineralization within the Serra da Pedra Branca Granite, were mapped. This methodology can be sucessfully applied to similar known granite bodies elsewhere in the Tin Province of Goias

    Multiseasonal variables in digital image enhancements for geological applications

    Get PDF
    Examples of enhanced multiseasonal orbital imagery illustrate the influence of multiseasonal changes in their spatial and spectral attributes, and consequently in their application to structural geology and lithological discrimination. Shadow effects associated with appropriate solar elevation and azimuth effects enhance the spatial attributes but not the spectral. In this case, variations in illumination conditions should be minimized by selecting images with high solar elevation and by the use of techniques that minimize illumination conditions. Multiseasonal imagery should be used in the identification of spectral contrast changes of rock-soil-vegetation associations which can provide evidences of related lithological units and structural features. The extraction of maximum geological information requires, at least, a fall/winter and a spring/summer scene from which spatial, spectral and multiseasonal attributes can be adequately explored
    corecore