74 research outputs found

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    In vitro toxicity, antioxidant, anti-inflammatory, and antidiabetic potential of Sphaerostephanos unitus (L.) holttum

    No full text
    Pteridophytes have been widely used in several systems of medicine. Several reports have increasingly assessed their bioactive effects, but for Sphaerostephanos unitus (L.) Holttum, only its antibacterial potential has been assessed. In this sense, the present study was carried out to reveal the phytochemical profile and to determine the toxicity, antioxidant, antidiabetic, and anti-inflammatory potential of S. unitus. Brine shrimp lethality, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, phosphomolybdenum assay, superoxide radical scavenging activity, 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) assay (ABTS), and in vitro a-amylase inhibitory and membrane stabilization assays were applied. S. unitus extract toxicity showed variable mortality percentages, with LC50 values ranging from 4 to 30 mg/mL. DPPH radical scavenging effects of S. unitus extracts were as follows: methanol > acetone > petroleum ether > chloroform. S. unitus acetone extract displayed the strongest phosphomolybdenum reduction (10 ± 2 mg Ascorbic Acid Equivalent/g). The studied extracts also revealed efficient, superoxide scavenging effects in a dose-dependent manner. In S. unitus, the highest ABTS radical scavenging rate was observed in the chloroform extract (3000 ± 40 µmol/g). The S. unitus anti-inflammatory effect was as follows: petroleum ether > chloroform > methanol > acetone. In S. unitus extract, the highest percentage of a-amylase activity (80%) was observed for the petroleum ether extract (25 µg/mL). Faced with these findings, further studies should be performed to isolate and identify the S. unitus compounds responsible for their antioxidant, antidiabetic and anti-inflammatory effects

    Plasma nitriding of CA-6NM steel: effect of H2 + N2 gas mixtures in nitride layer formation for low N2 contents at 500 ºC

    No full text
    This work aims to characterize the phases, thickness, hardness and hardness profiles of the nitride layers formed on the CA-6NM martensitic stainless steel which was plasma nitrided in gas mixtures containing different nitrogen amounts. Nitriding was performed at 500 ºC temperature, and 532 Pa (4 Torr) pressure, for gas mixtures of 5% N2 + 95% H2, 10% N2 + 90% H2, and 20% N2 + 80% H2, and 2 hours nitriding time. A 6 hours nitriding time condition for gas mixture of 5% N2 + 95% H2 was also studied. Nitrided samples results were compared with non-nitrided condition. Thickness and microstructure of the nitrided layers were characterized by optical microscopy (OM), using Villela and Nital etchants, and the phases were identified by X-ray diffraction. Hardness profiles and hardness measured on surface steel were determined using Vickers hardness and nanoindentation tester, respectively. It was verified that nitrided layer produced in CA-6NM martensitc stainless steel is constituted of compound layer, being that formation of the diffusion zone was not observed for the studied conditions. The higher the nitrogen amounts in gas mixture the higher is the thickness of the nitrided layer and the probability to form different nitride phases, in the case γ'-Fe4N, ε-Fe2-3N and CrN phases. Intrinsic hardness of the nitrided layers produced in the CA-6NM stainless steel is about 12-14 GPa (~1200-1400 HV)
    corecore