332 research outputs found

    Spin glass transition in a magnetic field: a renormalization group study

    Full text link
    We study the transition of short range Ising spin glasses in a magnetic field, within a general replica symmetric field theory, which contains three masses and eight cubic couplings, that is defined in terms of the fields representing the replicon, anomalous and longitudinal modes. We discuss the symmetry of the theory in the limit of replica number n to 0, and consider the regular case where the longitudinal and anomalous masses remain degenerate. The spin glass transitions in zero and non-zero field are analyzed in a common framework. The mean field treatment shows the usual results, that is a transition in zero field, where all the modes become critical, and a transition in non-zero field, at the de Almeida-Thouless (AT) line, with only the replicon mode critical. Renormalization group methods are used to study the critical behavior, to order epsilon = 6-d. In the general theory we find a stable fixed-point associated to the spin glass transition in zero field. This fixed-point becomes unstable in the presence of a small magnetic field, and we calculate crossover exponents, which we relate to zero-field critical exponents. In a finite magnetic field, we find no physical stable fixed-point to describe the AT transition, in agreement with previous results of other authors.Comment: 36 pages with 4 tables. To be published in Phys. Rev.

    Dynamic scaling and aging phenomena in short-range Ising spin glass: Cu0.5_{0.5}Co0.5_{0.5}Cl2_{2}-FeCl3_{3} graphite bi-intercalation compound

    Full text link
    Static and dynamic behavior of short-range Ising-spin glass Cu0.5_{0.5}Co0.5_{0.5}Cl2_{2}-FeCl3_{3} graphite bi-intercalation compounds (GBIC) has been studied with SQUID DC and AC magnetic susceptibility. The TT dependence of the zero-field relaxation time τ\tau above a spin-freezing temperature TgT_{g} (= 3.92 ±\pm 0.11 K) is well described by critical slowing down. The absorption χ\chi^{\prime\prime} below TgT_{g} decreases with increasing angular frequency ω\omega, which is in contrast to the case of 3D Ising spin glass. The dynamic freezing temperature Tf(H,ω)T_{f}(H,\omega) at which dMFC(T,H)/M_{FC}(T,H)/dH=χ(T,H=0,ω)H=\chi^{\prime}(T,H=0,\omega), is determined as a function of frequency (0.01 Hz ω/2π\leq \omega/2\pi \leq 1 kHz) and magnetic field (0 H\leq H \leq 5 kOe). The dynamic scaling analysis of the relaxation time τ(T,H)\tau(T,H) defined as τ=1/ω\tau = 1/\omega at T=Tf(H,ω)T = T_{f}(H,\omega) suggests the absence of SG phase in the presence of HH (at least above 100 Oe). Dynamic scaling analysis of χ(T,ω)\chi^{\prime \prime}(T, \omega) and τ(T,H)\tau(T,H) near TgT_{g} leads to the critical exponents (β\beta = 0.36 ±\pm 0.03, γ\gamma = 3.5 ±\pm 0.4, ν\nu = 1.4 ±\pm 0.2, zz = 6.6 ±\pm 1.2, ψ\psi = 0.24 ±\pm 0.02, and θ\theta = 0.13 ±\pm 0.02). The aging phenomenon is studied through the absorption χ(ω,t)\chi^{\prime \prime}(\omega, t) below TgT_{g}. It obeys a (ωt)b(\omega t)^{-b^{\prime \prime}} power-law decay with an exponent b0.150.2b^{\prime \prime}\approx 0.15 - 0.2. The rejuvenation effect is also observed under sufficiently large (temperature and magnetic-field) perturbations.Comment: 14 pages, 19 figures; to be published in Phys. Rev. B (September 1, 2003

    Optical Tweezers 3d Photonic Force Spectroscopy

    Get PDF
    Since optical tweezers trapped microspheres can be used as an ultrasensitive force measurements technique, the knowledge of its theoretical description is of utmost importance. However, even the description of the incident electromagnetic fields under very tight focusing, typical of the optical trap, is not yet a closed problem. Therefore it is important to experimentally obtain whole accurate curves of the force as a function of wavelength, polarization and incident beam 3D position with respect to the center of the microsphere. Theoretical models for optical forces such as the Generalized Lorenz-Mie theory, can then be applied to the precisely evaluated experimental results. Using a dual trap in an upright standard optical microscope, one to keep the particle at the equilibrium position and the other to disturb it we have been able to obtain these force curves as a function of x, y and z position, incident beam polarization and also wavelength. Further investigation of optical forces was conducted for wavelengths in and out Mie resonances of the dielectric microspherical cavities for both TM and TE modes.6131Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., Chu, S., Observation of a single-beam gradient force trap for dielectric particles (1986) Opt. Lett., 11, pp. 288-290Ashkin, A., Dziedzic, J.M., Optical trapping and manipulation of viruses and bacteria (1987) Science, 235, pp. 1517-1520Grier, D.G., A revolution in optical manipulation (2003) Nature, 424, pp. 810-816Neuman, K.C., Block, S., Optical trapping (2004) Rev. Sci. Instrum., 75, pp. 2787-2809Lock, J.A., Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration (2004) Appl. Opt., 43, pp. 2532-2544Lock, J.A., Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force (2004) Appl. Opt., 43, pp. 2545-2554Mazolli, A., Neto, P.A.M., Nussenzveig, H.M., Theory of trapping forces in optical tweezers (2003) Proc. Royal Soc. London Ser. A Math. Phys. Eng. Sci., 459, pp. 3021-3041Fontes, A., Neves, A.A.R., Moreira, W.L., De Thomaz, A.A., Barbosa, L.C., De Paula, A.M., Cesar, C.L., Double optical tweezers for ultrasensitive force spectroscopy in microsphere Mie scattering (2005) Appl. Phys. Lett., 87. , Art. No. 221109Ren, K.F., Gouesbet, G., Gréhan, G., Integral localized approximation in generalized Lorenz-Mie theory (1998) Appl. Opt., 37, pp. 4218-4225Lock, J.A., Excitation efficiency of a morphology-dependent resonance by a focused Gaussian beam (1998) J. Opt. Soc. Am. A, 15, pp. 2986-2994Davis, L.W., Theory of electromagnetic beams (1979) Phys. Rev. A, 19, pp. 1177-1779Ren, K.F., Gréhan, G., Gouesbet, G., Radiation pressure forces exerted on a particle arbitrarily located in a gaussian beam by using the generalized Lorenz-Mie theory and associated resonance effects (1994) Opt. Commun., 108, pp. 343-354Ren, K.F., Gréhan, G., Gouesbet, G., Symmetry relations in generalized Lorenz-Mie theory (1994) J. Opt. Soc. Am. A, 11, pp. 1812-181

    Morphophysiological Plasticity Of Plagiotropic Branches In Response To Change In The Coffee Plant Spacing Within Rows

    Get PDF
    Changes in spacing within rows may alter the morphology of the coffee plant by affecting the physiological constituents of its productivity. Even though some common plant responses to crop spacing variation are known, there is yet no scientific evidence that elucidates the effects of decreased spacing on the sourcesink relation in plagiotropic branches and, its association with both productivity and eco-physiological aspects of coffee leaves, mainly for new coffee cultivars in the Brazilian savannah. The aim of this work was to characterize the morphophysiological responses of Coffea arabica L. cultivars subjected to different spacing between plants within rows. Four Arabica coffee cultivars (Catuaí Vermelho IAC 144, Catuaí Amarelo IAC 62, Catuaí Amarelo IAC 32, and Tupi RN IAC 1669-13) were transplanted in January 2010. A row spacing of 0.40, 0.50, 0.60, 0.70, and 0.80 m was adopted between plants, maintaining a 3.80-m constant between rows. A randomized block design with four replicates was applied. During the experimental period, several morphophysiological characteristics of plagiotropic fruiting branches were evaluated in the months of April and December in 2013 and, in April 2014. The evaluation was conducted based on two canopy positions; canopy toward the rows, representing low exposure to light or toward the inter-row spacing, representing high light exposure. Leaf gas exchange, chlorophyll fluorescence, and photosynthetic pigments levels were minimally or not at all affected by changing either the coffee cultivars or plant spacing. During the first evaluation, the leaf-to-fruitratio linearly increased, regardless of the cultivar. Light-exposed branches showed higher content of carotenoids and chlorophyll a in leaves and lower leaf-to-fruit-ratio as compared to those within the plant canopy. A major reduction in the number of fruits per branch was observed which was closely related to a parallel decrease in the number of fruits per node but not in the number of fruiting nodes per branch. Although this response was largely cultivar-dependent, it also changed according to the branch position in the hedgerow. Our results suggest that all tested cultivars exhibit high morphophysiological plasticity and have the potential to grow under different plant spacing within rows.3763819383
    corecore