7 research outputs found

    Synthesis, docking and evaluation of novel fused pyrimidine compounds as possible lead compounds with antibacterial and antitumor activities

    Get PDF
    Reaction of a series of hydrazonoyl chlorides with substituted aminopyrimidines afforded good selectivity in most cases leading either to formation of new imidazo[1,2-a]pyrimidine derivatives, or regioisomeric hydrazonamide adducts. The compounds were evaluated for antibacterial and anticancer activities. Screening against 'E. Coli', 'P. aeruginosa', 'S. aureus', 'S. epidermidis', 'B. subtilis' and 'K. rhizophila' did identify several different compound types with MIC of 0.1-0.4 mg/mL. Anticancer evaluation against a HeLa cell line identified one imidazo[1,2-a]pyrimidine lead. An 'in silico' target fishing analysis suggest three possible high value protein targets, Tankyrase-2 (Tank-2), Cyclin-dependent kinase (CDK2) and Epidermal growth factor tyrosine kinase receptor (EGFR), with modelling fit against co-crystallized known ligands. This provides a new structural family lead for further investigation of molecular targets and potential SAR activity development

    Antihyperuricemic and xanthine oxidase inhibitory activities of Tribulus arabicus and its isolated compound, ursolic acid: In vitro and in vivo investigation and docking simulations.

    No full text
    BACKGROUND:Hyperurecemia is usually associated with gout and various metabolic arthritis disorders. Limited medications are available to manage such conditions. This study aimed to isolate the triterpenes constituent of the plant and to assess xanthine oxidase (XO) inhibitory and antihyperuricemic activities of Tribulus arabicus ethanolic extract, its fractions and the isolated compound using in vitro and in vivo approaches. METHODS:The ethanolic extract, fractions; n-hexane, chloroform and n-butanol and the isolated compound (ursolic acid) were evaluated in vitro for their XO inhibitory activity. Those that demonstrated significant activity were further evaluated for their antihyperuricemic activity on potassium oxonate-induced hyperuricemia in mice. RESULTS:The ethanolic extract was found to be safe up to 5000 mg/kg. The extract and its n-hexane fraction exhibited significant inhibitory activity on XO, whilst only a modest reduction in the enzymatic activity was noticed with n-butanol and chloroform fractions. Furthermore, administration of the ethanolic extract at low and high doses significantly reduced serum urate levels in mice by 31.1 and 64.6% respectively. The isolated active constituent, ursolic acid, showed potent XO inhibition activity (Half maximal inhibitory concentration, IC50 = 10.3 μg/mL), and significantly reduced uric acid level in vivo by 79.9%. Virtually, the binding mode of ursolic acid with XO was determined using molecular docking simulations. CONCLUSIONS:The activity of the ethanolic extract of T. arabicus and its n-hexane fraction can be attributed to the isolated compound, ursolic acid. Ursolic acid has good hypouricemic activity and therefore has high potential to be used for the treatment of gout and hyperuricemia-related diseases

    Image1_The interaction of TRPV1 and lipids: Insights into lipid metabolism.pdf

    No full text
    Transient receptor potential vanilloid 1 (TRPV1), a non-selective ligand-gated cation channel with high permeability for Ca2+, has received considerable attention as potential therapeutic target for the treatment of several disorders including pain, inflammation, and hyperlipidemia. In particular, TRPV1 regulates lipid metabolism by mechanisms that are not completely understood. Interestingly, TRPV1 and lipids regulate each other in a reciprocal and complex manner. This review surveyed the recent literature dealing with the role of TRPV1 in the hyperlipidemia-associated metabolic syndrome. Besides TRPV1 structure, molecular mechanisms underlying the regulatory effect of TRPV1 on lipid metabolism such as the involvement of uncoupling proteins (UCPs), ATP-binding cassette (ABC) transporters, peroxisome proliferation-activated receptors (PPAR), sterol responsive element binding protein (SREBP), and hypoxia have been discussed. Additionally, this review extends our understanding of the lipid-dependent modulation of TRPV1 activity through affecting both the gating and the expression of TRPV1. The regulatory role of different classes of lipids such as phosphatidylinositol (PI), cholesterol, estrogen, and oleoylethanolamide (OEA), on TRPV1 has also been addressed.</p

    Crystal structures of pure 3-(4-bromo-2-chlorophenyl)-1-(pyridin-4-yl)benzo[4,5]imidazo[1,2-d][1,2,4]triazin-4(3H)-one and contaminated with 3-(4-bromophenyl)-1-(pyridin-4-yl)benzo[4,5]imidazo[1,2-d][1,2,4]triazin-4(3H)-one

    No full text
    The side product of the cyclocondensation reaction between ethyl benzimidazole-2-carboxylate and the nitrile imine of the corresponding hydrazonyl chloride, C20H11BrClN5O, crystallized in two crystal forms. Form (1) is a co-crystal of the target compound (without any chlorine substituent) and a side product containing a Cl atom in position 2 of the bromophenyl group, C20H12BrN5O·0.143C20H11BrClN5O. (2) contains the pure side product. The slightly different conformation of the ring systems leads to a different packing of (1) and (2), but both crystal structures are dominated by π–π interactions

    1-(Pyridin-4-yl)-3-(2,4,6-trichlorophenyl)benz[4,5]imidazo[1,2-d][1,2,4]triazin-4(3H)-one

    Get PDF
    In the title compound, C20H10Cl3N5O, the 13-membered ring system makes dihedral angles of 78.64 (9)° with the trichlorophenyl ring and 62.60 (10)° with the pyridine ring. The crystal packing is dominated by π–π interactions between the 13-membered ring systems [centroid–centroid distance = 3.6655 (11)°]

    Role and Function of Adenosine and its Receptors in Inflammation, Neuroinflammation, IBS, Autoimmune Inflammatory Disorders, Rheumatoid Arthritis and Psoriasis

    No full text
    corecore