33 research outputs found

    Reinforced Concrete Building with IED Detonation: Test and Simulation

    Get PDF
    There is growing concern about the possibility of a suicide bomber being immolated when the army forces or the law enforcement agencies discover the place where they prepare their material or simply find themselves inside a building. To study the possible effects that these improvised explosive devices (IEDs) would have on the structures, eight tests were carried out with various configurations of IEDs with vest bombs inside a reinforced concrete (including walls and roof) building constructed ad hoc for these tests. These vests were made with different explosives (black powder, ANFO, AN/AL, PG2). For the characterization of these tests, a high-speed camera and pressure and acceleration sensors were used. The structure behaved surprisingly well, as it withstood all the first seven detonations without apparent structural damage. In the last detonation, located on the ground and with a significant explosive charge, the structural integrity of the roof and some of the walls was compromised. The simulation of the building was carried out with the LS-DYNA software with a Lagrangian formulation for the walls, using the LBE (based on CONWEP) module for the application of the charge. Despite the difficulty of this simulation, the results obtained, in terms of applied pressures and measured accelerations, are acceptable with differences of about 20%

    Linezolid for infective endocarditis. A structured approach based on a national database experience

    Get PDF
    Current data on the frequency and efficacy of linezolid (LNZ) in infective endocarditis (IE) are based on small retrospective series. We used a national database to evaluate the effectiveness of LNZ in IE. This is a retrospective study of IE patients in the Spanish GAMES database who received LNZ. We defined 3 levels of therapeutic impact: LNZ 50% of the total treatment, and > 50% of the LNZ doses prescribed in the first weeks of treatment), and LNZ ? 7 days not fulfilling the high-impact criteria (LNZ-NHI). Effectiveness of LNZ was assessed using propensity score matching and multivariate analysis of high-impact cases in comparison to patients not treated with LNZ from the GAMES database matched for age-adjusted comorbidity Charlson index, heart failure, renal failure, prosthetic and intracardiac IE device, left-sided IE, and Staphylococcus aureus. Primary outcomes were in-hospital mortality and one-year mortality. Secondary outcomes included IE complications and relapses

    Role of proton pump inhibitors dosage and duration in Helicobacter pylori eradication treatment: Results from the European Registry on H. pylori management

    Get PDF
    Background: Management of Helicobacter pylori (H. pylori) infection requires co-treatment with proton pump inhibitors (PPIs) and the use of antibiotics to achieve successful eradication. Aim: To evaluate the role of dosage of PPIs and the duration of therapy in the effectiveness of H. pylori eradication treatments based on the ‘European Registry on Helicobacter pylori management’ (Hp-EuReg). Methods: Hp-EuReg is a multicentre, prospective, non-interventionist, international registry on the routine clinical practice of H. pylori management by European gastroenterologists. All infected adult patients were systematically registered from 2013 to 2022. Results: Overall, 36,579 patients from five countries with more than 1000 patients were analysed. Optimal (≄90%) first-line-modified intention-to-treat effectiveness was achieved with the following treatments: (1) 14-day therapies with clarithromycin-amoxicillin-bismuth and metronidazole-tetracycline-bismuth, both independently of the PPI dose prescribed; (2) All 10-day (except 10-day standard triple therapy) and 14-day therapies with high-dose PPIs; and (3) 10-day quadruple therapies with clarithromycin-amoxicillin-bismuth, metronidazole-tetracycline-bismuth, and clarithromycin-amoxicillin-metronidazole (sequential), all with standard-dose PPIs. In first-line treatment, optimal effectiveness was obtained with high-dose PPIs in all 14-day treatments, in 10- and 14-day bismuth quadruple therapies and in 10-day sequential with standard-dose PPIs. Optimal second-line effectiveness was achieved with (1) metronidazole-tetracycline-bismuth quadruple therapy for 14- and 10 days with standard and high-dose PPIs, respectively; and (2) levofloxacin-amoxicillin triple therapy for 14 days with high-dose PPIs. None of the 7-day therapies in both treatment lines achieved optimal effectiveness. Conclusions: We recommend, in first-line treatment, the use of high-dose PPIs in 14-day triple therapy and in 10-or 14-day quadruple concomitant therapy in first-line treatment, while standard-dose PPIs would be sufficient in 10-day bismuth quadruple therapies. On the other hand, in second-line treatment, high-dose PPIs would be more beneficial in 14-day triple therapy with levofloxacin and amoxicillin or in 10-day bismuth quadruple therapy either as a three-in-one single capsule or in the traditional scheme

    Inhibition of <it>Listeria monocytogenes</it> ATCC 19115 on ham steak by tea bioactive compounds incorporated into chitosan-coated plastic films

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The consumer demands for better quality and safety of food products have given rise to the development and implementation of edible films. The use of antimicrobial films can be a promising tool for controlling <it>L. monocytogenes</it> on ready to eat products. The aim of this study was to develop effective antimicrobial films incorporating bioactive compounds from green and black teas into chitosan, for controlling <it>L. monocytogenes</it> ATCC 19115 on vacuum-packaged ham steak. The effectiveness of these antimicrobial films was evaluated at room temperature (20°C) for 10 days and at refrigerated temperature (4°C) for 8 weeks.</p> <p>Results</p> <p>The HPLC results clearly show that relative concentrations of catechins and caffeine in green tea ranked EGCG>EGC>CAF>ECG>EC>C while in black tea extracts ranked CAF>EGCG>ECG>EGC>EC>C. The chitosan-coated plastic films incorporating green tea and black tea extracts shows specific markers identified by FTIR. Incorporating natural extracts into chitosan showed that the growth of <it>L monocytogenes</it> ATCC 19115 was inhibited. The efficacy of antimicrobial effect of tea extracts incorporated into chitosan-coated plastic film was dose dependent. However, chitosan-coated films without addition of tea extracts did not inhibit the growth of <it>L. monocytogenes</it> ATCC 19115<it>.</it> Chitosan-coated plastic films incorporating 4% Green tea extract was the most effective antimicrobial, reducing the initial counts from 3.2 to 2.65 log CFU/cm<sup>2</sup> during room temperature storage and from 3.2 to 1–1.5 log CFU/cm<sup>2</sup> during refrigerated storage.</p> <p>Conclusions</p> <p>Incorporation of tea extracts into the chitosan-coated films considerably enhanced their effectiveness against <it>L. monocytogenes</it> ATCC 19115. 4% Green tea incorporated into chitosan-coated plastic film had a better antilisterial effect than 2% green tea or 2% and 4% black tea. Data from this study would provide new formulation options for developing antimicrobial packaging films using tea extracts to improve the microbiological safety and quality of ham steak during room and refrigerated storage.</p
    corecore