7 research outputs found

    Characterization of the Kidins220 CaMKIICre conditional KO mouse line

    Get PDF
    Kidins220 (Kinase-D interacting substrate of 220 kDa) is a scaffold transmembrane protein abundantly expressed in the nervous system. Mutations in the KIDINS220 gene have been correlated with psychiatric disorders and with the recently described SINO syndrome, characterized by spastic paraplegia, intellectual disability, syntagmus and obesity. Kidins220 is involved in several neuronal functions regulated by neurotrophic factors, including neuronal survival, differentiation and synaptic plasticity. Previous work with the complete KO mouse model for Kidins220 evidenced the crucial role of this protein in neuronal and cardiovascular development since its embryonic ablation is lethal. Thus to gain a comprehensive understanding of the role of Kidins220 in the adult mouse, a Cre/loxP based conditional KO (cKO) mouse model was generated, in which the Ca2+/ Calmodulin-dependent kinase-II (CaMKII) promoter drives Cre expression, and consequently protein deletion specifically in the postnatal forebrain. The characterization of the Kidins220 cKO model has been accomplished through diverse approaches: behavioural experiments, brain and neuron morphological analysis, molecular signalling from brain slices and cultures, protein and gene expression assessment. cKO mice display alterations in anxiety levels and social behaviour, with a clear impairment in social memory. At the morphological level, data show reduced dendritic branching in cortical and hippocampal neurons, while at the molecular level, neuronal response to brain-derived neurotrophic factor (BDNF) stimulation is blunted, as well as the mitogen-activated protein kinase (MAPK) pathway activation. The behavioural profile of these animals provides useful knowledge about the pathophysiology of Kidins220, indicating that alterations of this protein expression may have important consequences on human pathologies of the cognitive and social sphere. Some psychiatric diseases are highly inheritable, and their causes have been traced back to genetic alterations such as point mutations and epigenetic modifications. A better understanding of such inheritable traits will provide us with a better knowledge of the cellular and physiological alterations underlying the behavioural and cognitive symptomatology of patients. In this respect, the knowledge of Kidins220 function will contribute to further elucidate the neuropathological mechanisms underlying some psychiatric diseases

    CNS gene therapy: present developments and emerging trends accelerating industry-academia pathways

    Get PDF
    The recent success of first central nervous system gene therapies has reinvigorated the growing community of gene therapy researchers and strengthened the field's market position. We are witnessing an increase of clinical trials with long-term efficiency mainly for neurometabolic, neurodegenerative and neurodevelopmental diseases caused by loss-of-function mutations. The ever-expanding knowledge and accessibility to the most advanced tools allow enrichment of applications to more complex diseases. This gradually contributes towards sealing the gap between top diseases impacting current global health and those towards which gene therapy development is currently aimed. Here, we highlight innovative therapeutic approaches that have reached the clinics and outline the latest improvements of vector design and targeting. Finally, we address the pressing challenges faced by clinical trials and the direction they are heading

    Kidins220/ARMS modulates brain morphology and anxiety-like traits in adult mice

    Get PDF
    open11: Kinase D interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat-rich membrane spanning (ARMS), is a transmembrane scaffold protein that participates in fundamental aspects of neuronal physiology including cell survival, differentiation, and synaptic plasticity. The Kidins220 constitutive knockout line displays developmental defects in the nervous and cardiovascular systems that lead to embryonic lethality, which has so far precluded the study of this protein in the adult. Moreover, Kidins220 mRNA is tightly regulated by alternative splicing, whose impact on nervous system physiology has not yet been addressed in vivo. Here, we have asked to what extent the absence of Kidins220 splicing and the selective knockout of Kidins220 impact on adult brain homeostasis. To answer this question, we used a floxed line that expresses only the full-length, non-spliced Kidins220 mRNA, and a forebrain-specific, CaMKII-Cre driven Kidins220 conditional knockout (cKO) line. Kidins220 cKO brains are characterized by enlarged ventricles in the absence of cell death, and by deficient dendritic arborization in several cortical regions. The deletion of Kidins220 leads to behavioral changes, such as reduced anxiety-like traits linked to alterations in TrkB-BDNF signaling and sex-dependent alterations of hippocampal-dependent spatial memory. Kidins220 floxed mice present similarly enlarged brain ventricles and increased associative memory. Thus, both the absolute levels of Kidins220 expression and its splicing pattern are required for the correct brain development and related expression of behavioral phenotypes. These findings are relevant in light of the increasing evidence linking mutations in the human KIDINS220 gene to the onset of severe neurodevelopmental disorders.openAlmacellas-Barbanoj, Amanda; Albini, Martina; Satapathy, Annyesha; Jaudon, Fanny; Michetti, Caterina; Krawczun-Rygmaczewska, Alicja; Huang, Huiping; Manago, Francesca; Papaleo, Francesco; Benfenati, Fabio; Cesca, FabriziaAlmacellas-Barbanoj, Amanda; Albini, Martina; Satapathy, Annyesha; Jaudon, Fanny; Michetti, Caterina; Krawczun-Rygmaczewska, Alicja; Huang, Huiping; Manago, Francesca; Papaleo, Francesco; Benfenati, Fabio; Cesca, Fabrizi

    On-demand cell-autonomous gene therapy for brain circuit disorders

    Get PDF
    Several neurodevelopmental and neuropsychiatric disorders are characterized by intermittent episodes of pathological activity. Although genetic therapies offer the ability to modulate neuronal excitability, a limiting factor is that they do not discriminate between neurons involved in circuit pathologies and “healthy” surrounding or intermingled neurons. We describe a gene therapy strategy that down-regulates the excitability of overactive neurons in closed loop, which we tested in models of epilepsy. We used an immediate early gene promoter to drive the expression of Kv1.1 potassium channels specifically in hyperactive neurons, and only for as long as they exhibit abnormal activity. Neuronal excitability was reduced by seizure-related activity, leading to a persistent antiepileptic effect without interfering with normal behaviors. Activity-dependent gene therapy is a promising on-demand cell-autonomous treatment for brain circuit disorders

    Alterations in KIDINS220/ARMS Expression Impact Sensory Processing and Social Behavior in Adult Mice

    No full text
    Kinase D-interacting substrate of 220 kDa (Kidins220) is a transmembrane protein that participates in neural cell survival, maturation, and plasticity. Mutations in the human KIDINS220 gene are associated with a neurodevelopmental disorder (‘SINO’ syndrome) characterized by spastic paraplegia, intellectual disability, and in some cases, autism spectrum disorder. To better understand the pathophysiology of KIDINS220-linked pathologies, in this study, we assessed the sensory processing and social behavior of transgenic mouse lines with reduced Kidins220 expression: the CaMKII-driven conditional knockout (cKO) line, lacking Kidins220 in adult forebrain excitatory neurons, and the Kidins220floxed line, expressing constitutively lower protein levels. We show that alterations in Kidins220 expression levels and its splicing pattern cause impaired response to both auditory and olfactory stimuli. Both transgenic lines show impaired startle response to high intensity sounds, with preserved pre-pulsed inhibition, and strongly reduced social odor recognition. In the Kidins220floxed line, olfactory alterations are associated with deficits in social memory and increased aggressive behavior. Our results broaden our knowledge of the SINO syndrome; understanding sensory information processing and its deviations under neuropathological conditions is crucial for devising future therapeutic strategies to enhance the quality of life of affected individuals

    Appetitive to aversive counter-conditioning as intervention to reduce reinstatement of reward-seeking behavior: the role of the serotonin transporter

    No full text
    Counter-conditioning can be a valid strategy to reduce reinstatement of reward-seeking behavior. However, this has not been tested in laboratory animals with extended cocaine-taking backgrounds nor is it well understood, which individual differences may contribute to its effects. Here, we set out to investigate the influence of serotonin transporter (5-HTT) genotype on the effectiveness of counter-conditioning after extended access to cocaine self-administration. To this end, 5-HTT+/+ and 5-HTT-/- rats underwent a touch screen-based approach to test if reward-induced reinstatement of responding to a previously counter-conditioned cue is reduced, compared with a non-counter-conditioned cue, in a within-subject manner. We observed an overall extinction deficit of cocaine-seeking behavior in 5-HTT-/- rats and a resistance to punishment during the counter-conditioning session. Furthermore, we observed a significant decrease in reinstatement to cocaine and sucrose associated cues after counter-conditioning but only in 5-HTT+/+ rats. In short, we conclude that the paradigm we used was able to produce effects of counter-conditioning of sucrose seeking behavior in line with what is described in literature, and we demonstrate that it can be effective even after long-term exposure to cocaine, in a genotype-dependent manne
    corecore