17 research outputs found

    Effect of DPP-4 inhibitor sitagliptin against ischemia-reperfusion (I/R) injury in hyperlipidemic animals

    Get PDF
    Hyperlipidemia is a major risk factor associated with increased risk of myocardial infarction. Dipeptidyl peptidase-4 (DPP-4) inhibitors such as sitagliptin are a class of oral anti-diabetic drugs with secondary pleiotropic effects on metabolic and cardiovascular parameters. This study aimed to determine the possible cardioprotective effects of sitagliptin on ischemia-reperfusion (I/R) injury in animals kept on high-fat diet. Male Wistar rats were fed with high-fat diet (HF) for 12 weeks, to induce hyperlipidemia. During the last two weeks of the feeding period, animals were orally treated with different doses of sitagliptin (Sitg: 25, 50, 100, and 150 mg/kg/day), or saline as a control. Heart tissues were then isolated and subjected to two different I/R-injury protocols for infarct size (IS) measurement and biochemical analysis. To test the role of NOS enzyme, NOS inhibitor (L-NAME) was injected intraperitoneally for IS evaluation. As an effective dose, Sitg (50 mg) exhibited a significant impact on IS. NOS activity increased significantly in the Sitg (50 mg) treated groups; however this protective effect was abolished in the presence of L-NAME. The protective effect of Sitg that was mediated by TRP channels in our previous study on normolipidemic animals was abrogated in animals fed with high-fat diet

    Investigation of h2s donor treatment on neutrophil extracellular traps in experimental colitis

    Get PDF
    Inflammatory bowel diseases (IBD) are chronic, immune-mediated disorders, which affect the gastrointestinal tract with intermittent ulceration. It is increasingly clear that neutrophil extracellular traps (NETs) seem to have a role in IBD; however, the associated pathogenesis is still not known. Furthermore, several conventional therapies are available against IBD, although these might have side effects. Our current study aimed to investigate the effects of hydrogen sulfide (H2S) treatment on NETs formation and on the expression of inflammatory mediators in experimental rat colitis. To model IBD, 2,4,6-trinitrobenzenesulfonic acid (TNBS) was administered intracolonically (i.c.) to Wistar–Harlan male rats. Animals were treated (2 times/day) with H2S donor Lawesson’s reagent per os. Our results showed that H2S treatment significantly decreased the extent of colonic lesions. Furthermore, the expression of members of NETs formation: peptidyl arginine deiminase 4 (PAD4), citrullinated histone H3 (citH3), myeloperoxidase (MPO) and inflammatory regulators, such as nuclear transcription factor-kappa B (NF-κB) and high-mobility group box 1 (HMGB1) were reduced in H2S treated group compared to TNBS. Additionally, H2S donor administration elevated the expression of ubiquitin C-terminal hydroxylase L1 (UCHL-1), a potential anti-inflammatory mediator. Taken together, our results showed that H2S may exert anti-inflammatory effect through the inhibition of NETs formation, which suggests a new therapeutic approach against IBD. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Investigation of H2S Donor Treatment on Neutrophil Extracellular Traps in Experimental Colitis

    No full text
    Inflammatory bowel diseases (IBD) are chronic, immune-mediated disorders, which affect the gastrointestinal tract with intermittent ulceration. It is increasingly clear that neutrophil extracellular traps (NETs) seem to have a role in IBD; however, the associated pathogenesis is still not known. Furthermore, several conventional therapies are available against IBD, although these might have side effects. Our current study aimed to investigate the effects of hydrogen sulfide (H2S) treatment on NETs formation and on the expression of inflammatory mediators in experimental rat colitis. To model IBD, 2,4,6-trinitrobenzenesulfonic acid (TNBS) was administered intracolonically (i.c.) to Wistar–Harlan male rats. Animals were treated (2 times/day) with H2S donor Lawesson’s reagent per os. Our results showed that H2S treatment significantly decreased the extent of colonic lesions. Furthermore, the expression of members of NETs formation: peptidyl arginine deiminase 4 (PAD4), citrullinated histone H3 (citH3), myeloperoxidase (MPO) and inflammatory regulators, such as nuclear transcription factor-kappa B (NF-κB) and high-mobility group box 1 (HMGB1) were reduced in H2S treated group compared to TNBS. Additionally, H2S donor administration elevated the expression of ubiquitin C-terminal hydroxylase L1 (UCHL-1), a potential anti-inflammatory mediator. Taken together, our results showed that H2S may exert anti-inflammatory effect through the inhibition of NETs formation, which suggests a new therapeutic approach against IBD

    Voluntary Exercise-Mediated Protection in TNBS-Induced Rat Colitis: The Involvement of NETosis and Prdx Antioxidants

    No full text
    Inflammatory bowel diseases (IBDs) are autoimmune disorders of the gut. It is increasingly clear that voluntary exercise (VE) may exert protection against IBDs, but the exact background mechanism needs to be elucidated. In the present study, we aimed to investigate the possible role of NETosis and the antioxidant peroxiredoxin (Prdx) enzyme family in VE-induced protection. Wistar Han rats were randomly divided into two groups: sedentary (SED) and VE. After the 6-week voluntary wheel running, animals were treated with 2,4,6-trinitrobenzene sulphonic acid (TNBS) as a model of colitis. Here, we found that VE significantly decreased inflammation and ulceration of the colon in the VE TNBS group compared with SED TNBS. We also found that VE significantly decreased the expression of protein arginine deiminase 4 (PAD4) and myeloperoxidase (MPO), and markedly reduced citrullinated histone H3 (citH3) compared with SED TNBS. Furthermore, VE caused a significant increase in the levels of Prdx6 in the control and TNBS groups. Taken together, we found that a prior 6-week VE effectively reduces inflammation in TNBS-induced colitis, and we suggest that the protective effect of VE may be mediated via the inhibition of NETosis and upregulation of Prdx6 antioxidant

    Sigma-1 Receptor Engages an Anti-Inflammatory and Antioxidant Feedback Loop Mediated by Peroxiredoxin in Experimental Colitis

    No full text
    Inflammatory bowel disease (IBD), comprising Crohn’s disease (CD) and ulcerative colitis (UC), is a chronic inflammatory condition of the gastrointestinal tract. Since the treatment of IBD is still an unresolved issue, we designed our study to investigate the effect of a novel therapeutic target, sigma-1 receptor (σ1R), considering its ability to activate antioxidant molecules. As a model, 2,4,6-trinitrobenzenesulfonic acid (TNBS) was used to induce colitis in Wistar–Harlan male rats. To test the beneficial effects of σ1R, animals were treated intracolonically (i.c.): (1) separately with an agonist (fluvoxamine (FLV)), (2) with an antagonist of the receptor (BD1063), or (3) as a co-treatment. Our results showed that FLV significantly decreased the severity of inflammation and increased the body weight of the animals. On the contrary, simultaneous treatment of FLV with BD1063 diminished the beneficial effects of FLV. Furthermore, FLV significantly enhanced the levels of glutathione (GSH) and peroxiredoxin 1 (PRDX1) and caused a significant reduction in 3-nitrotyrosine (3-NT) levels, the effects of which were abolished by co-treatment with BD1063. Taken together, our results suggest that the activation of σ1R in TNBS-induced colitis through FLV may be a promising therapeutic strategy, and its protective effect seems to involve the antioxidant pathway system

    Moderate-Intensity Swimming Alleviates Oxidative Injury in Ischemic Heart

    No full text
    The global burden of cardiovascular diseases is indisputable, as it claims nearly 18 million lives a year. In this current study, we aimed to prove that exercise, a cornerstone in cardiovascular disease management, emerges as a powerful tool in the pathology of myocardial ischemia. Male rats were divided into three groups: pre-swimming training + isoproterenol (ISO) treated, isoproterenol-treated, and control-sedentary. Myocardial infarction was induced by the subcutaneous injection of 1.0 mg/kg ISO. After the subsequent rest period, the animals swam for 3 weeks, every day for 25 min. At the end of the experiment, the serum levels of atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP), as well as the cardiac concentrations of reactive oxygen species (ROS), catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) were determined. Our results indicate that both cardiac injury biomarkers (ANP, BNP) and ROS levels were significantly lower in swimming rats compared to the sedentary animals. Moreover, the level of enzymatic components of the intracellular antioxidant system, CAT, SOD, and GPx were increased in swimming animals after ISO-induced myocardial infarction. Our findings support the fact that moderate-intensity swimming training can be efficiently used to prevent myocardial infarction-induced ischemic injury, by inhibiting ROS production and strengthening intracellular antioxidant defense
    corecore