2,828 research outputs found

    Crude awakening: behind the surge in oil prices

    Get PDF
    The first few months of 2008 saw crude oil prices breach one barrier after another. They topped 100abarrelforthefirsttimeonFeb.19,thenrosepast100 a barrel for the first time on Feb. 19, then rose past 103.76 about two weeks later, surpassing the previous inflation-adjusted peak, established in 1980. In April and early May, oil prices pushed past 110andthen110 and then 120 a barrel and beyond. ; These milestones reflect a new era in oil markets. After the tumult of the early 1980s, prices remained relatively tame for two decades - in both real and nominal terms. This long stretch of stability ended in 2004, when oil topped $40 a barrel for the first time, then embarked on a steep climb that continued into this year. ; Modern economies run on oil, so it's important to understand how recent years - with their surging prices - differ from the preceding two decades. A good starting point is strong demand, which has pushed world oil markets close to capacity. New supplies haven't kept up with this demand, fueling expectations that oil markets will remain tight for the foreseeable future. A weakening dollar has put upward pressure on the price of a commodity that trades in the U.S. currency. And because a large share of oil production takes place in politically unstable regions, fears of supply disruptions loom over markets. ; These factors have fed the steady, sometimes swift rise of oil prices in recent years. Their persistence suggests the days of relatively cheap oil are over and the global economy faces a future of high energy prices. How they play out will shape oil markets - and determine prices - for years to come.Petroleum products - Prices ; Petroleum industry and trade ; Organization of Petroleum Exporting Countries ; Dollar, American

    Quasiparticle light elements and quantum condensates in nuclear matter

    Full text link
    Nuclei in dense matter are influenced by the medium. In the cluster mean field approximation, an effective Schr\"odinger equation for the AA-particle cluster is obtained accounting for the effects of the surrounding medium, such as self-energy and Pauli blocking. Similar to the single-baryon states (free neutrons and protons), the light elements (2≤A≤42 \le A \le 4, internal quantum state ν\nu) are treated as quasiparticles with energies EA,ν(P;T,nn,np)E_{A,\nu}(P; T, n_n,n_p) that depend on the center of mass momentum P⃗\vec P, the temperature TT, and the total densities nn,npn_n,n_p of neutrons and protons, respectively. We consider the composition and thermodynamic properties of nuclear matter at low densities. At low temperatures, quartetting is expected to occur. Consequences for different physical properties of nuclear matter and finite nuclei are discussed.Comment: 5 pages, 1 figure, 2 table

    Four-particle condensate in strongly coupled fermion systems

    Full text link
    Four-particle correlations in fermion systems at finite temperatures are investigated with special attention to the formation of a condensate. Instead of the instability of the normal state with respect to the onset of pairing described by the Gorkov equation, a new equation is obtained which describes the onset of quartetting. Within a model calculation for symmetric nuclear matter, we find that below a critical density, the four-particle condensation (alpha-like quartetting) is favored over deuteron condensation (triplet pairing). This pairing-quartetting competition is expected to be a general feature of interacting fermion systems, such as the excition-biexciton system in excited semiconductors. Possible experimental consequences are pointed out.Comment: LaTeX, 11 pages, 2 figures, uses psfig.sty (included), to be published in Phys. Rev. Lett., tentatively scheduled for 13 April 1998 (Volume 80, Number 15

    The Nucleon Spectral Function at Finite Temperature and the Onset of Superfluidity in Nuclear Matter

    Get PDF
    Nucleon selfenergies and spectral functions are calculated at the saturation density of symmetric nuclear matter at finite temperatures. In particular, the behaviour of these quantities at temperatures above and close to the critical temperature for the superfluid phase transition in nuclear matter is discussed. It is shown how the singularity in the thermodynamic T-matrix at the critical temperature for superfluidity (Thouless criterion) reflects in the selfenergy and correspondingly in the spectral function. The real part of the on-shell selfenergy (optical potential) shows an anomalous behaviour for momenta near the Fermi momentum and temperatures close to the critical temperature related to the pairing singularity in the imaginary part. For comparison the selfenergy derived from the K-matrix of Brueckner theory is also calculated. It is found, that there is no pairing singularity in the imaginary part of the selfenergy in this case, which is due to the neglect of hole-hole scattering in the K-matrix. From the selfenergy the spectral function and the occupation numbers for finite temperatures are calculated.Comment: LaTex, 23 pages, 21 PostScript figures included (uuencoded), uses prc.sty, aps.sty, revtex.sty, psfig.sty (last included

    OpWise: Operons aid the identification of differentially expressed genes in bacterial microarray experiments

    Get PDF
    BACKGROUND: Differentially expressed genes are typically identified by analyzing the variation between replicate measurements. These procedures implicitly assume that there are no systematic errors in the data even though several sources of systematic error are known. RESULTS: OpWise estimates the amount of systematic error in bacterial microarray data by assuming that genes in the same operon have matching expression patterns. OpWise then performs a Bayesian analysis of a linear model to estimate significance. In simulations, OpWise corrects for systematic error and is robust to deviations from its assumptions. In several bacterial data sets, significant amounts of systematic error are present, and replicate-based approaches overstate the confidence of the changers dramatically, while OpWise does not. Finally, OpWise can identify additional changers by assigning genes higher confidence if they are consistent with other genes in the same operon. CONCLUSION: Although microarray data can contain large amounts of systematic error, operons provide an external standard and allow for reasonable estimates of significance. OpWise is available at

    A Self-Consistent Solution to the Nuclear Many-Body Problem at Finite Temperature

    Full text link
    The properties of symmetric nuclear matter are investigated within the Green's functions approach. We have implemented an iterative procedure allowing for a self-consistent evaluation of the single-particle and two-particle propagators. The in-medium scattering equation is solved for a realistic (non-separable) nucleon-nucleon interaction including both particle-particle and hole-hole propagation. The corresponding two-particle propagator is constructed explicitely from the single-particle spectral functions. Results are obtained for finite temperatures and an extrapolation to T=0 is presented.Comment: 11 pages 5 figure

    Spatially inhomogeneous condensate in asymmetric nuclear matter

    Full text link
    We study the isospin singlet pairing in asymmetric nuclear matter with nonzero total momentum of the condensate Cooper pairs. The quasiparticle excitation spectrum is fourfold split compared to the usual BCS spectrum of the symmetric, homogeneous matter. A twofold splitting of the spectrum into separate branches is due to the finite momentum of the condensate, the isospin asymmetry, or the finite quasiparticle lifetime. The coupling of the isospin singlet and triplet paired states leads to further twofold splitting of each of these branches. We solve the gap equation numerically in the isospin singlet channel in the case where the pairing in the isospin triplet channel is neglected and find nontrivial solutions with finite total momentum of the pairs. The corresponding phase assumes a periodic spatial structure which carries a isospin density wave at constant total number of particles. The phase transition from the BCS to the inhomogeneous superconducting phase is found to be first order and occurs when the density asymmetry is increased above 0.25. The transition from the inhomogeneous superconducting to the unpaired normal state is second order. The maximal values of the critical total momentum (in units of the Fermi momentum) and the critical density asymmetry at which condensate disappears are Pc/pF=0.3P_c/p_F = 0.3 and αc=0.41\alpha_c = 0.41. The possible spatial forms of the ground state of the inhomogeneous superconducting phase are briefly discussed.Comment: 13 pages, including 3 figues, uses RevTeX; minor corrections, PRC in pres

    In medium T-matrix for superfluid nuclear matter

    Get PDF
    We study a generalized ladder resummation in the superfluid phase of the nuclear matter. The approach is based on a conserving generalization of the usual T-matrix approximation including also anomalous self-energies and propagators. The approximation here discussed is a generalization of the usual mean-field BCS approach and of the in medium T-matrix approximation in the normal phase. The numerical results in this work are obtained in the quasi-particle approximation. Properties of the resulting self-energy, superfluid gap and spectral functions are studied.Comment: 38 pages, 19 figures, Introduction rewritten, Refs. adde

    Critical Enhancement of the In-medium Nucleon-Nucleon Cross Section at low Temperatures

    Full text link
    The in-medium nucleon-nucleon cross section is calculated starting from the thermodynamic T-matrix at finite temperatures. The corresponding Bethe-Salpeter-equation is solved using a separable representation of the Paris nucleon-nucleon-potential. The energy-dependent in-medium N-N cross section at a given density shows a strong temperature dependence. Especially at low temperatures and low total momenta, the in-medium cross section is strongly modified by in-medium effects. In particular, with decreasing temperature an enhancement near the Fermi energy is observed. This enhancement can be discussed as a precursor of the superfluid phase transition in nuclear matter.Comment: 10 pages with 4 figures (available on request from the authors), MPG-VT-UR 34/94 accepted for publication in Phys. Rev.
    • …
    corecore