56 research outputs found

    Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment

    No full text
    International audienceData from a recent field campaign in Mexico City are used to evaluate the performance of the EPA Federal Reference Method for monitoring the ambient concentrations of NO2. Measurements of NO2 from standard chemiluminescence monitors equipped with molybdenum oxide converters are compared with those from Tunable Infrared Laser Differential Absorption Spectroscopy (TILDAS) and Differential Optical Absorption Spectroscopy (DOAS) instruments. A significant interference in the chemiluminescence measurement is shown to account for up to 50% of ambient NO2 concentration during afternoon hours. As expected, this interference correlates well with non-NOx reactive nitrogen species (NOz) as well as with ambient O3 concentrations, indicating a photochemical source for the interfering species. A combination of ambient gas phase nitric acid and alkyl and multifunctional alkyl nitrates is deduced to be the primary cause of the interference. Observations at four locations at varying proximities to emission sources indicate that the percentage contribution of HNO3 to the interference decreases with time as the air parcel ages. Alkyl and multifunctional alkyl nitrate concentrations are calculated to reach concentrations as high as several ppb inside the city, on par with the highest values previously observed in other urban locations. Averaged over the MCMA-2003 field campaign, the chemiluminescence monitor interference resulted in an average measured NO2 concentration up to 22% greater than that from co-located spectroscopic measurements. Thus, this interference has the potential to initiate regulatory action in areas that are close to non-attainment and may mislead atmospheric photochemical models used to assess control strategies for photochemical oxidants

    Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance

    Get PDF
    The new generation of gravitational waves detectors require unprecedented levels of isolation from seismic noise. This article reviews the seismic isolation strategy and instrumentation developed for the Advanced LIGO observatories. It summarizes over a decade of research on active inertial isolation and shows the performance recently achieved at the Advanced LIGO observatories. The paper emphasizes the scientific and technical challenges of this endeavor and how they have been addressed. An overview of the isolation strategy is given. It combines multiple layers of passive and active inertial isolation to provide suitable rejection of seismic noise at all frequencies. A detailed presentation of the three active platforms that have been developed is given. They are the hydraulic pre-isolator, the single-stage internal isolator and the two-stage internal isolator. The architecture, instrumentation, control scheme and isolation results are presented for each of the three systems. Results show that the seismic isolation sub-system meets Advanced LIGO\u27s stringent requirements and robustly supports the operation of the two detectors

    Advanced LIGO two-stage twelve-axis vibration isolation and positioning platform. Part 2: Experimental investigation and tests results

    Get PDF
    This paper presents the results of the past seven years of experimental investigation and testing done on the two-stage twelve-axis vibration isolation platform for Advanced LIGO gravity waves observatories. This five-ton two-and-half-meter wide system supports more than a 1000 kg of very sensitive equipment. It provides positioning capability and seismic isolation in all directions of translation and rotation. To meet the very stringent requirements of Advanced LIGO, the system must provide more than three orders of magnitude of isolation over a very large bandwidth. It must bring the motion below 10-11 m/Hz at 1 Hz and 10-12 m/Hz at 10 Hz. A prototype of this system has been built in 2006. It has been extensively tested and analyzed during the following two years. This paper shows how the experimental results obtained with the prototype were used to engineer the final design. It highlights how the engineering solutions implemented not only improved the isolation performance but also greatly simplified the assembly, testing, and commissioning process. During the past two years, five units have been constructed, tested, installed and commissioned at each of the two LIGO observatories. Five other units are being built for an upcoming third observatory. The test results presented show that the system meets the motion requirements, and reach the sensor noise in the control bandwidth

    Advanced LIGO two-stage twelve-axis vibration isolation and positioning platform. Part 1: Design and production overview

    Get PDF
    New generations of gravity wave detectors require unprecedented levels of vibration isolation. This paper presents the final design of the vibration isolation and positioning platform used in Advanced LIGO to support the interferometer\u27s core optics. This five-ton two-and-half-m wide system operating in ultra-high vacuum. It features two stages of isolation mounted in series. The stages are imbricated to reduce the overall height. Each stage provides isolation in all directions of translation and rotation. The system is instrumented with a unique combination of low noise relative and inertial sensors. The active control provides isolation from 0.1 Hz to 30 Hz. It brings the platform motion down to 10-11m/√Hz at 1 Hz. Active and passive isolation combine to bring the platform motion below 10-12m/√Hz at 10 Hz. The passive isolation lowers the motion below 10-13m/√Hz at 100 Hz. The paper describes how the platform has been engineered not only to meet the isolation requirements, but also to permit the construction, testing, and commissioning process of the fifteen units needed for Advanced LIGO observatories
    • …
    corecore