43 research outputs found
Prostate cancer in male BRCA1 and BRCA2 mutation carriers has a more aggressive phenotype
There is a high and rising prevalence of prostate cancer (PRCA) within the male population of the United Kingdom. Although the relative risk of PRCA is higher in male BRCA2 and BRCA1 mutation carriers, the histological characteristics of this malignancy in these groups have not been clearly defined. We present the histopathological findings in the first UK series of BRCA1 and BRCA2 mutation carriers with PRCA. The archived histopathological tissue sections of 20 BRCA1/2 mutation carriers with PRCA were collected from histopathology laboratories in England, Ireland and Scotland. The cases were matched to a control group by age, stage and serum PSA level of PRCA cases diagnosed in the general population. Following histopathological evaluation and re-grading according to current conventional criteria, Gleason scores of PRCA developed by BRCA1/2 mutation carriers were identified to be significantly higher (Gleason scores 8, 9 or 10, P=0.012) than those in the control group. Since BRCA1/2 mutation carrier status is associated with more aggressive disease, it is a prognostic factor for PRCA outcome. Targeting screening to this population may detect disease at an earlier clinical stage which may therefore be beneficial
Molecular preservation by extraction and fixation, mPREF: a method for small molecule biomarker analysis and histology on exactly the same tissue
<p>Abstract</p> <p>Background</p> <p>Histopathology is the standard method for cancer diagnosis and grading to assess aggressiveness in clinical biopsies. Molecular biomarkers have also been described that are associated with cancer aggressiveness, however, the portion of tissue analyzed is often processed in a manner that is destructive to the tissue. We present here a new method for performing analysis of small molecule biomarkers and histology in exactly the same biopsy tissue.</p> <p>Methods</p> <p>Prostate needle biopsies were taken from surgical prostatectomy specimens and first fixed, each in a separate vial, in 2.5 ml of 80% methanol:water. The biopsies were fixed for 24 hrs at room temperature and then removed and post-processed using a non-formalin-based fixative (UMFIX), embedded, and analyzed by hematoxylin and eosin (H&E) and by immunohistochemical (IHC) staining. The retained alcohol pre-fixative was analyzed for small molecule biomarkers by mass spectrometry.</p> <p>Results</p> <p>H&E analysis was successful following the pre-fixation in 80% methanol. The presence or absence of tumor could be readily determined for all 96 biopsies analyzed. A subset of biopsy sections was analyzed by IHC, and cancerous and non-cancerous regions could be readily visualized by PIN4 staining. To demonstrate the suitability for analysis of small molecule biomarkers, 28 of the alcohol extracts were analyzed using a mass spectrometry-based metabolomics platform. All extracts tested yielded successful metabolite profiles. 260 named biochemical compounds were detected in the alcohol extracts. A comparison of the relative levels of compounds in cancer containing <it>vs</it>. non-cancer containing biopsies showed differences for 83 of the compounds. A comparison of the results with prior published reports showed good agreement between the current method and prior reported biomarker discovery methods that involve tissue destructive methods.</p> <p>Conclusions</p> <p>The Molecular Preservation by Extraction and Fixation (mPREF) method allows for the analysis of small molecule biomarkers from exactly the same tissue that is processed for histopathology.</p
The use of Raman spectroscopy to differentiate between different prostatic adenocarcinoma cell lines
Raman spectroscopy (RS) is an optical technique that provides an objective method of pathological diagnosis based on the molecular composition of tissue. Studies have shown that the technique can accurately identify and grade prostatic adenocarcinoma (CaP) in vitro. This study aimed to determine whether RS was able to differentiate between CaP cell lines of varying degrees of biological aggressiveness. Raman spectra were measured from two well-differentiated, androgen-sensitive cell lines (LNCaP and PCa 2b) and two poorly differentiated, androgen-insensitive cell lines (DU145 and PC 3). Principal component analysis was used to study the molecular differences that exist between cell lines and, in conjunction with linear discriminant analysis, was applied to 200 spectra to construct a diagnostic algorithm capable of differentiating between the different cell lines. The algorithm was able to identify the cell line of each individual cell with an overall sensitivity of 98% and a specificity of 99%. The results further demonstrate the ability of RS to differentiate between CaP samples of varying biological aggressiveness. RS shows promise for application in the diagnosis and grading of CaP in clinical practise as well as providing molecular information on CaP samples in a research setting
Segmentation of epidermal tissue with histopathological damage in images of haematoxylin and eosin stained human skin.
Background: Digital image analysis has the potential to address issues surrounding traditional histological techniques including a lack of objectivity and high variability, through the application of quantitative analysis. A key initial step in image analysis is the identification of regions of interest. A widely applied methodology is that of segmentation. This paper proposes the application of image analysis techniques to segment skin tissue with varying degrees of histopathological damage. The segmentation of human tissue is challenging as a consequence of the complexity of the tissue structures and inconsistencies in tissue preparation, hence there is a need for a new robust method with the capability to handle the additional challenges materialising from histopathological damage.Methods: A new algorithm has been developed which combines enhanced colour information, created following a transformation to the L*a*b* colourspace, with general image intensity information. A colour normalisation step is included to enhance the algorithm's robustness to variations in the lighting and staining of the input images. The resulting optimised image is subjected to thresholding and the segmentation is fine-tuned using a combination of morphological processing and object classification rules. The segmentation algorithm was tested on 40 digital images of haematoxylin & eosin (H&E) stained skin biopsies. Accuracy, sensitivity and specificity of the algorithmic procedure were assessed through the comparison of the proposed methodology against manual methods.Results: Experimental results show the proposed fully automated methodology segments the epidermis with a mean specificity of 97.7%, a mean sensitivity of 89.4% and a mean accuracy of 96.5%. When a simple user interaction step is included, the specificity increases to 98.0%, the sensitivity to 91.0% and the accuracy to 96.8%. The algorithm segments effectively for different severities of tissue damage.Conclusions: Epidermal segmentation is a crucial first step in a range of applications including melanoma detection and the assessment of histopathological damage in skin. The proposed methodology is able to segment the epidermis with different levels of histological damage. The basic method framework could be applied to segmentation of other epithelial tissues
Does true Gleason pattern 3 merit its cancer descriptor?
Nearly five decades following its conception, the Gleason grading system remains a cornerstone in the prognostication and management of patients with prostate cancer. In the past few years, a debate has been growing whether Gleason score 3 + 3 = 6 prostate cancer is a clinically significant disease. Clinical, molecular and genetic research is addressing the question whether well characterized Gleason score 3 + 3 = 6 disease has the ability to affect the morbidity and quality of life of an individual in whom it is diagnosed. The consequences of treatment of Gleason score 3 + 3 = 6 disease are considerable; few men get through their treatments without sustaining some harm. Further modification of the classification of prostate cancer and dropping the label cancer for Gleason score 3 + 3 = 6 disease might be warranted