140 research outputs found

    Nouvelles recherches expérimentales sur la pneumonie à virus du porc

    Get PDF
    Fontaine M., Goret Pierre, Brion Abel, Pilet Charles, Girard Marc, Alloui P. Nouvelles recherches expérimentales sur la pneumonie à virus du Porc. In: Bulletin de l'Académie Vétérinaire de France tome 112 n°10, 1959. pp. 675-694

    TRPV1 in Brain Is Involved in Acetaminophen-Induced Antinociception

    Get PDF
    Background: Acetaminophen, the major active metabolite of acetanilide in man, has become one of the most popular overthe- counter analgesic and antipyretic agents, consumed by millions of people daily. However, its mechanism of action is still a matter of debate. We have previously shown that acetaminophen is further metabolized to N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (AM404) by fatty acid amide hydrolase (FAAH) in the rat and mouse brain and that this metabolite is a potent activator of transient receptor potential vanilloid 1 (TRPV1) in vitro. Pharmacological activation of TRPV1 in the midbrain periaqueductal gray elicits antinociception in rats. It is therefore possible that activation of TRPV1 in the brain contributes to the analgesic effect of acetaminophen. Methodology/Principal Findings: Here we show that the antinociceptive effect of acetaminophen at an oral dose lacking hypolocomotor activity is absent in FAAH and TRPV1 knockout mice in the formalin, tail immersion and von Frey tests. This dose of acetaminophen did not affect the global brain contents of prostaglandin E-2 (PGE(2)) and endocannabinoids. Intracerebroventricular injection of AM404 produced a TRPV1-mediated antinociceptive effect in the mouse formalin test. Pharmacological inhibition of TRPV1 in the brain by intracerebroventricular capsazepine injection abolished the antinociceptive effect of oral acetaminophen in the same test. Conclusions: This study shows that TRPV1 in brain is involved in the antinociceptive action of acetaminophen and provides a strategy for developing central nervous system active oral analgesics based on the coexpression of FAAH and TRPV1 in the brain

    Recommendations for accurate genotyping of SARS-CoV-2 using amplicon-based sequencing of clinical samples.

    Get PDF
    Genotyping of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been instrumental in monitoring viral evolution and transmission during the pandemic. The quality of the sequence data obtained from these genotyping efforts depends on several factors, including the quantity/integrity of the input material, the technology, and laboratory-specific implementation. The current lack of guidelines for SARS-CoV-2 genotyping leads to inclusion of error-containing genome sequences in genomic epidemiology studies. We aimed to establish clear and broadly applicable recommendations for reliable virus genotyping. We established and used a sequencing data analysis workflow that reliably identifies and removes technical artefacts; such artefacts can result in miscalls when using alternative pipelines to process clinical samples and synthetic viral genomes with an amplicon-based genotyping approach. We evaluated the impact of experimental factors, including viral load and sequencing depth, on correct sequence determination. We found that at least 1000 viral genomes are necessary to confidently detect variants in the SARS-CoV-2 genome at frequencies of ≥10%. The broad applicability of our recommendations was validated in over 200 clinical samples from six independent laboratories. The genotypes we determined for clinical isolates with sufficient quality cluster by sampling location and period. Our analysis also supports the rise in frequencies of 20A.EU1 and 20A.EU2, two recently reported European strains whose dissemination was facilitated by travel during the summer of 2020. We present much-needed recommendations for the reliable determination of SARS-CoV-2 genome sequences and demonstrate their broad applicability in a large cohort of clinical samples

    A Human TREK-1/HEK Cell Line: A Highly Efficient Screening Tool for Drug Development in Neurological Diseases

    Get PDF
    TREK-1 potassium channels are involved in a number of physiopathological processes such as neuroprotection, pain and depression. Molecules able to open or to block these channels can be clinically important. Having a cell model for screening such molecules is of particular interest. Here, we describe the development of the first available cell line that constituvely expresses the TREK-1 channel. The TREK-1 channel expressed by the h-TREK-1/HEK cell line has conserved all its modulation properties. It is opened by stretch, pH, polyunsaturated fatty acids and by the neuroprotective molecule, riluzole and it is blocked by spadin or fluoxetine. We also demonstrate that the h-TREK-1/HEK cell line is protected against ischemia by using the oxygen-glucose deprivation model

    Antiretroviral-naive and -treated HIV-1 patients can harbour more resistant viruses in CSF than in plasma

    Get PDF
    Objectives The neurological disorders in HIV-1-infected patients remain prevalent. The HIV-1 resistance in plasma and CSF was compared in patients with neurological disorders in a multicentre study. Methods Blood and CSF samples were collected at time of neurological disorders for 244 patients. The viral loads were >50 copies/mL in both compartments and bulk genotypic tests were realized. Results On 244 patients, 89 and 155 were antiretroviral (ARV) naive and ARV treated, respectively. In ARV-naive patients, detection of mutations in CSF and not in plasma were reported for the reverse transcriptase (RT) gene in 2/89 patients (2.2%) and for the protease gene in 1/89 patients (1.1%). In ARV-treated patients, 19/152 (12.5%) patients had HIV-1 mutations only in the CSF for the RT gene and 30/151 (19.8%) for the protease gene. Two mutations appeared statistically more prevalent in the CSF than in plasma: M41L (P = 0.0455) and T215Y (P = 0.0455). Conclusions In most cases, resistance mutations were present and similar in both studied compartments. However, in 3.4% of ARV-naive and 8.8% of ARV-treated patients, the virus was more resistant in CSF than in plasma. These results support the need for genotypic resistance testing when lumbar puncture is performe
    corecore