98 research outputs found

    Thermomechanical Model and Bursting Tests to Evaluate the Risk of Swelling and Bursting of Modified 9Cr-1Mo Steel Steam Generator Tubes during a Sodium-Water Reaction Accident

    Get PDF
    The MECTUB code was developed to evaluate the risk of swelling and bursting of Steam Generator (SG) tubes. This code deals with the physic of intermediate steam-water leaks into sodium which induce a Sodium-Water Reaction (SWR). It is based on a one-dimensional calculation to describe the thermomechanical behavior of tubes under a high internal pressure and a fast external overheating. The mechanical model of MECTUB is strongly correlated with the kind of the material of the SG tubes. It has been developed and validated by using experiments performed on the alloy 800. A change to tubes made of Modified 9Cr-1Mo steel requires more knowledge of Modified 9Cr-1Mo steel behavior which influences the bursting time at high temperatures (up to 1200°C). Studies have been initiated to adapt the mechanical model and to qualify it for this material. The first part of this paper focuses on the mechanical law modelling (elasticity, plasticity, and creep) for Modified 9Cr-1Mo steel and on overheating thermal data. In a second part, the results of bursting tests performed on Modified 9Cr-1Mo tubes in the SQUAT facility of CEA are used to validate the mechanical model of MECTUB for the Modified 9Cr-1Mo material

    Different strategies for mechanical VENTilation during CardioPulmonary Bypass (CPBVENT 2014): Study protocol for a randomized controlled trial

    Get PDF
    Background: There is no consensus on which lung-protective strategies should be used in cardiac surgery patients. Sparse and small randomized clinical and animal trials suggest that maintaining mechanical ventilation during cardiopulmonary bypass is protective on the lungs. Unfortunately, such evidence is weak as it comes from surrogate and minor clinical endpoints mainly limited to elective coronary surgery. According to the available data in the academic literature, an unquestionable standardized strategy of lung protection during cardiopulmonary bypass cannot be recommended. The purpose of the CPBVENT study is to investigate the effectiveness of different strategies of mechanical ventilation during cardiopulmonary bypass on postoperative pulmonary function and complications. Methods/design: The CPBVENT study is a single-blind, multicenter, randomized controlled trial. We are going to enroll 870 patients undergoing elective cardiac surgery with planned use of cardiopulmonary bypass. Patients will be randomized into three groups: (1) no mechanical ventilation during cardiopulmonary bypass, (2) continuous positive airway pressure of 5 cmH2O during cardiopulmonary bypass, (3) respiratory rate of 5 acts/min with a tidal volume of 2-3 ml/Kg of ideal body weight and positive end-expiratory pressure of 3-5 cmH2O during cardiopulmonary bypass. The primary endpoint will be the incidence of a PaO2/FiO2ratio <200 until the time of discharge from the intensive care unit. The secondary endpoints will be the incidence of postoperative pulmonary complications and 30-day mortality. Patients will be followed-up for 12 months after the date of randomization. Discussion: The CPBVENT trial will establish whether, and how, different ventilator strategies during cardiopulmonary bypass will have an impact on postoperative pulmonary complications and outcomes of patients undergoing cardiac surgery. Trial registration: ClinicalTrials.gov, ID: NCT02090205. Registered on 8 March 2014

    Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA)

    Full text link
    • …
    corecore