100 research outputs found

    Campylobacter jejuni strains from patients with Guillain-Barré syndrome.

    Get PDF
    Guillain-Barré syndrome (GBS), an acute demyelinating peripheral neuropathy, may be triggered by an acute infectious illness; infection with Campylobacter jejuni is the most frequently reported antecedent event. In Japan, O:19 is the most common serotype among GBS-associated C. jejuni strains. To determine whether serotype O:19 occurs among GBS-associated strains in the United States and Europe, we serotyped seven such strains and found that two (29%) of seven GBS-associated strains from patients in the United States and Germany were serotype O:19. To determine whether GBS-associated strains may be resistant to killing by normal human serum (NHS), we studied the serum susceptibility of 17 GBS- and 27 enteritis-associated strains (including many O:19 and non-O:19 strains) using C. jejuni antibody positive (pool 1) or negative (pool 2) human serum. Using pool 1 serum we found that one (6%) of 18 serotype O:19 strains compared with 11 (42%) of 26 non-O:19 strains were killed; results using pool 2 serum were nearly identical. Finally, 8 O:19 and 8 non-O:19 strains were not significantly different in their ability to bind complement component C3. Serotype O:19 C. jejuni strains were overrepresented among GBS-associated strains in the United States and Germany and were significantly more serum-resistant than non-O:19 strains. The mechanism of this resistance appears unrelated to C3 binding

    Assessing the effects of multiple infections and long latency in the dynamics of tuberculosis

    Get PDF
    In order to achieve a better understanding of multiple infections and long latency in the dynamics of Mycobacterium tuberculosis infection, we analyze a simple model. Since backward bifurcation is well documented in the literature with respect to the model we are considering, our aim is to illustrate this behavior in terms of the range of variations of the model's parameters. We show that backward bifurcation disappears (and forward bifurcation occurs) if: (a) the latent period is shortened below a critical value; and (b) the rates of super-infection and re-infection are decreased. This result shows that among immunosuppressed individuals, super-infection and/or changes in the latent period could act to facilitate the onset of tuberculosis. When we decrease the incubation period below the critical value, we obtain the curve of the incidence of tuberculosis following forward bifurcation; however, this curve envelops that obtained from the backward bifurcation diagram

    The Prevalence of Campylobacter amongst a Free-Range Broiler Breeder Flock Was Primarily Affected by Flock Age

    Get PDF
    Campylobacter successfully colonizes broiler chickens, but little is known about the longer term natural history of colonization, since most flocks are slaughtered at an immature age. In this study, the prevalence and genetic diversity of Campylobacter colonizing a single free-range broiler breeder flock was investigated over the course of a year. The age of the flock was the most important factor in determining both the prevalence and diversity of Campylobacter over time. There was no correlation with season, temperature, the amount of rain and sunshine, or the dynamics of colonization amongst geographically and temporally matched broiler flocks. The higher prevalence rates coincided with the age at which broiler chickens are typically slaughtered, but then in the absence of bio-security or other intervention methods, and despite changes in flock management, the prevalence fell to significantly lower levels for the remainder of the study. The genetic diversity of Campylobacter increased as the flock aged, implying that genotypes were accumulated within the flock and may persist for a long time. A better understanding of the ecology of Campylobacter within commercial chicken flocks will allow the design of more effective farm-based interventions

    Intestinal Microbiota Shifts towards Elevated Commensal Escherichia coli Loads Abrogate Colonization Resistance against Campylobacter jejuni in Mice

    Get PDF
    Background: The zoonotic pathogen Campylobacter jejuni is a leading cause of bacterial foodborne enterocolitis in humans worldwide. The understanding of immunopathology underlying human campylobacteriosis is hampered by the fact that mice display strong colonization resistance against the pathogen due to their host specific gut microbiota composition. Methodology/Principal Findings: Since the microbiota composition changes significantly during intestinal inflammation we dissected factors contributing to colonization resistance against C. jejuni in murine ileitis, colitis and in infant mice. In contrast to healthy animals C. jejuni could stably colonize mice suffering from intestinal inflammation. Strikingly, in mice with Toxoplasma gondii-induced acute ileitis, C. jejuni disseminated to mesenteric lymphnodes, spleen, liver, kidney, and blood. In infant mice C. jejuni infection induced enterocolitis. Mice suffering from intestinal inflammation and C. jejuni susceptible infant mice displayed characteristical microbiota shifts dominated by increased numbers of commensal Escherichia coli. To further dissect the pivotal role of those distinct microbiota shifts in abrogating colonization resistance, we investigated C. jejuni infection in healthy adult mice in which the microbiota was artificially modified by feeding live commensal E. coli. Strikingly, in animals harboring supra-physiological intestinal E. coli loads, colonization resistance was significantly diminished and C. jejuni infection induced enterocolitis mimicking key features of human campylobacteriosis. Conclusion/Significance: Murine colonization resistance against C. jejuni is abrogated by changes in the microbiot

    High-Resolution Melting System to Perform Multilocus Sequence Typing of Campylobacter jejuni

    Get PDF
    Multi-locus sequence typing (MLST) has emerged as the state-of-the-art method for resolving bacterial population genetics but it is expensive and time consuming. We evaluated the potential of high resolution melting (HRM) to identify known MLST alleles of Campylobacter jejuni at reduced cost and time. Each MLST locus was amplified in two or three sub fragments, which were analyzed by HRM. The approach was investigated using 47 C. jejuni isolates, previously characterized by classical MLST, representing isolates from diverse environmental, animal and clinical sources and including the six most prevalent sequence types (ST) and the most frequent alleles. HRM was then applied to a validation set of 84 additional C. jejuni isolates from chickens; 92% of the alleles were resolved in 35 hours of laboratory time and the cost of reagents per isolate was 20comparedwith20 compared with 100 for sequence-based typing. HRM has the potential to complement sequence-based methods for resolving SNPs and to facilitate a wide range of genotyping studies

    Key Role of Mfd in the Development of Fluoroquinolone Resistance in Campylobacter jejuni

    Get PDF
    Campylobacter jejuni is a major food-borne pathogen and a common causative agent of human enterocolitis. Fluoroquinolones are a key class of antibiotics prescribed for clinical treatment of enteric infections including campylobacteriosis, but fluoroquinolone-resistant Campylobacter readily emerges under the antibiotic selection pressure. To understand the mechanisms involved in the development of fluoroquinolone-resistant Campylobacter, we compared the gene expression profiles of C. jejuni in the presence and absence of ciprofloxacin using DNA microarray. Our analysis revealed that multiple genes showed significant changes in expression in the presence of a suprainhibitory concentration of ciprofloxacin. Most importantly, ciprofloxacin induced the expression of mfd, which encodes a transcription-repair coupling factor involved in strand-specific DNA repair. Mutation of the mfd gene resulted in an approximately 100-fold reduction in the rate of spontaneous mutation to ciprofloxacin resistance, while overexpression of mfd elevated the mutation frequency. In addition, loss of mfd in C. jejuni significantly reduced the development of fluoroquinolone-resistant Campylobacter in culture media or chickens treated with fluoroquinolones. These findings indicate that Mfd is important for the development of fluoroquinolone resistance in Campylobacter, reveal a previously unrecognized function of Mfd in promoting mutation frequencies, and identify a potential molecular target for reducing the emergence of fluoroquinolone-resistant Campylobacter

    Etiology of Diarrhea in Older Children, Adolescents and Adults: A Systematic Review

    Get PDF
    Diarrhea is an important cause of illness and death around the world and among people of all ages, but unfortunately we often do not know what specific bacterium or virus causes the illness. We conducted a review of the scientific literature with the goal of finding published studies that identified bacteria and viruses among patients with diarrhea in the community and in hospital settings. We initially found nearly 26,000 papers on this topic but narrowed the list to 22 studies that met all of our specific criteria for inclusion in our review. Among patients hospitalized for diarrhea, E coli and Vibrio cholerae were found in more than 49% of people living in middle income and poor countries. Among patients who sought care from their doctor on an outpatient basis, Salmonella spp., Shigella spp., and E. histolytica were most often found. In our review we focused on the differences in the distribution of pathogens between patients in inpatient vs. outpatient settings because these estimates may best approximate what we would expect to see if the distribution were applied to global estimates of diarrhea deaths vs. uncomplicated illnesses

    A farm-level study of risk factors associated with the colonization of broiler flocks with Campylobacter spp. in Iceland, 2001 – 2004

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Following increased rates of human campylobacteriosis in the late 1990's, and their apparent association with increased consumption of fresh chicken meat, a longitudinal study was conducted in Iceland to identify the means to decrease the frequency of broiler flock colonization with <it>Campylobacter</it>. Our objective in this study was to identify risk factors for flock colonization acting at the broiler farm level.</p> <p>Methods</p> <p>Between May 2001 and September 2004, pooled caecal samples were obtained from 1,425 flocks at slaughter and cultured for <it>Campylobacter</it>. Due to the strong seasonal variation in flock prevalence, analyses were restricted to a subset of 792 flocks raised during the four summer seasons. Flock results were collapsed to the farm level, such that the number of positive flocks and the total number of flocks raised were summed for each farm. Logistic regression models were fitted to the data using automated and manual selection methods. Variables of interest included manure management, water source and treatment, other poultry/livestock on farm, and farm size and management.</p> <p>Results</p> <p>The 792 flocks raised during the summer seasons originated from 83 houses on 33 farms, and of these, 217 (27.4%) tested positive. The median number of flocks per farm was 14, and the median number of positive flocks per farm was three. Three farms did not have any positive flocks. In general, factors associated with an increased risk of <it>Campylobacter </it>were increasing median flock size on the farm (p ≤ 0.001), spreading manure on the farm (p = 0.004 to 0.035), and increasing the number of broiler houses on the farm (p = 0.008 to 0.038). Protective factors included the use of official (municipal) (p = 0.004 to 0.051) or official treated (p = 0.006 to 0.032) water compared to the use of non-official untreated water, storing manure on the farm (p = 0.025 to 0.029), and the presence of other domestic livestock on the farm (p = 0.004 to 0.028).</p> <p>Conclusion</p> <p>Limiting the average flock size, and limiting the number of houses built on new farms, are interventions that require investigation. Water may play a role in the transmission of <it>Campylobacter</it>, therefore the use of official water, and potentially, treating non-official water may reduce the risk of colonization. Manure management practices deserve further attention.</p

    Comparative Genotyping of Campylobacter jejuni Strains from Patients with Guillain-Barré Syndrome in Bangladesh

    Get PDF
    Background: Campylobacter jejuni is a common cause of acute gastroenteritis and is associated with post-infectious neuropathies such as the Guillain-Barré syndrome (GBS) and the Miller Fisher syndrome (MFS). We here present comparative genotyping of 49 C. jejuni strains from Bangladesh that were recovered from patients with enteritis or GBS. All strains were serotyped and analyzed by lipo-oligosaccharide (LOS) genotyping, amplified fragment length polymorphism (AFLP) analysis, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE). Methodology/Principal Findings: C. jejuni HS:23 was a predominant serotype among GBS patients (50%), and no specific serotype was significantly associated with GBS compared to enteritis. PCR screening showed that 38/49 (78%) of strains could be assigned to LOS classes A, B, C, or E. The class A locus (4/7 vs 3/39; p<0.01) was significantly associated in the GBS-related strains as compared to enteritis strains. All GBS/oculomotor related strains contained the class B locus; which was also detected in 46% of control strains. Overlapping clonal groups were defined by MLST, AFLP and PFGE for strains from patients with gastroenteritis and GBS. MLST defined 22 sequence types (STs) and 7 clonal complexes including 7 STs not previously identified (ST-3742, ST-3741, ST-3743, ST-3748, ST-3968, ST-3969 and ST-3970). C. jejuni HS:23 strains from patients with GBS or enteritis were clonal and all strains belonged to ST-403 complex. Concordance between LOS class B and ST-403 complex was revealed. AFLP defined 25 different types at 90% similarity. The predominant AFLP type AF-20 coincided with the C. jejuni HS:23 and ST-403 complex. Conclusion/Significance: LOS genotyping, MLST, AFLP and PFGE helped to identify the HS:23 strains from GBS or enteritis patients as clonal. Overall, genotypes exclusive for enteritis or for GBS-related strains were not obtained although LOS class A was significantly associated with GBS str

    Comparative Genomic Analysis of Clinical Strains of Campylobacter jejuni from South Africa

    Get PDF
    BACKGROUND: Campylobacter jejuni is a common cause of acute gastroenteritis and is also associated with the post-infectious neuropathies, Guillain-Barré and Miller Fisher syndromes. In the Cape Town area of South Africa, C. jejuni strains with Penner heat-stable (HS) serotype HS:41 have been observed to be overrepresented among cases of Guillain-Barré syndrome. The present study examined the genetic content of a collection of 32 South African C. jejuni strains with different serotypes, including 13 HS:41 strains, that were recovered from patients with enteritis, Guillain-Barré or Miller Fisher syndromes. The sequence-based typing methods, multilocus sequence typing and DNA microarrays, were employed to potentially identify distinguishing features within the genomes of these C. jejuni strains with various disease outcomes. METHODOLOGY/PRINCIPAL FINDINGS: Comparative genomic analyses demonstrated that the HS:41 South African strains were clearly distinct from the other South African strains. Further DNA microarray analysis demonstrated that the HS:41 strains from South African patients with the Guillain-Barré syndrome or enteritis were highly similar in gene content. Interestingly, the South African HS:41 strains were distinct in gene content when compared to HS:41 strains from other geographical locations due to the presence of genomic islands, referred to as Campylobacter jejuni integrated elements (CJIEs). Only the integrated element CJIE1, a Campylobacter Mu-like prophage, was present in the South African HS:41 strains whereas this element was absent in two closely-related HS:41 strains from Mexico. A more distantly-related HS:41 strain from Canada possessed both integrated elements CJIE1 and CJIE2. CONCLUSION/SIGNIFICANCE: These findings demonstrate that CJIEs may contribute to the differentiation of closely-related C. jejuni strains. In addition, the presence of bacteriophage-related genes in CJIE1 may contribute to the genomic diversity of C. jejuni strains. This comparative genomic analysis of C. jejuni provides fundamental information that potentially could lead to improved methods for analyzing the epidemiology of disease outbreaks
    corecore