9 research outputs found

    Resting and injury-induced inflamed periosteum contain multiple macrophage subsets that are located at sites of bone growth and regeneration

    Get PDF
    Better understanding of bone growth and regeneration mechanisms within periosteal tissues will improve understanding of bone physiology and pathology. Macrophage contributions to bone biology and repair have been established but specific investigation of periosteal macrophages has not been undertaken. We used an immunohistochemistry approach to characterize macrophages in growing murine bone and within activated periosteum induced in a mouse model of bone injury. Osteal tissue macrophages (osteomacs) and resident macrophages were distributed throughout resting periosteum. In tissues collected from 4-week-old mice, osteomacs were observed intimately associated with sites of periosteal diaphyseal and metaphyseal bone dynamics associated with normal growth. This included F4/80(+)Mac-2(-/low) osteomac association with extended tracks of bone formation (modeling) on diphyseal periosteal surfaces. Although this recapitulated endosteal osteomac characteristics, there was subtle variance in the morphology and spatial organization of periosteal modeling-associated osteomacs, which likely reflects.the greater structural complexity of periosteum. Osteomacs, resident macrophages and inflammatory macrophages (F4/80(+)Mac-2(hi) were associated with the complex bone dynamics occurring within the periosteum at the metaphyseal corticalization zone. These three macrophage subsets were also present within activated native periosteum after bone injury across a 9-day time course that spanned the inflammatory through remodeling bone healing phases. This included osteomac association with foci of endochondral ossification within the activated native periosteum. These observations confirm that osteomacs are key components of both osteal tissues, in spite of salient differences between endosteal and periosteal structure and that multiple macrophage subsets are involved in periosteal bone dynamics

    Role of bone marrow macrophages in controlling homeostasis and repair in bone and bone marrow niches

    Get PDF
    Macrophages, named for their phagocytic ability, participate in homeostasis, tissue regeneration and inflammatory responses. Bone and adjacent marrow contain multiple functionally unique resident tissue macrophage subsets which maintain and regulate anatomically distinct niche environments within these interconnected tissues. Three subsets of bone-bone marrow resident tissue macrophages have been characterised; erythroblastic island macrophages, haematopoietic stem cell niche macrophages and osteal macrophages. The role of these macrophages in controlling homeostasis and repair in bone and bone marrow niches is reviewed in detail

    CD169(+) macrophages are critical for osteoblast maintenance and promote intramembranous and endochondral ossification during bone repair

    Get PDF
    Osteal macrophages (osteomacs) contribute to bone homeostasis and regeneration. To further distinguish their functions from osteoclasts, which share many markers and growth factor requirements, we developed a rapid, enzyme-free osteomac enrichment protocol that permitted characterization of minimally manipulated osteomacs by flow cytometry. Osteomacs differ from osteoclasts in expression of Siglec1 (CD169). This distinction was confirmed using the CD169-diphtheria toxin (DT) receptor (DTR) knock-in model. DT treatment of naïve CD169-DTR mice resulted in selective and striking loss of osteomacs, whilst osteoclasts and trabecular bone area were unaffected. Consistent with a previously-reported trophic interaction, osteomac loss was accompanied by a concomitant and proportionately striking reduction in osteoblasts. The impact of CD169 macrophage depletion was assessed in two models of bone injury that heal via either intramembranous (tibial injury) or endochondral (internally-plated femoral fracture model) ossification. In both models, CD169 macrophage, including osteomac depletion compromised bone repair. Importantly, DT treatment in CD169-DTR mice did not affect osteoclast frequency in either model. In the femoral fracture model, the magnitude of callus formation correlated with the number of F4/80 macrophages that persisted within the callus. Overall these observations provide compelling support that CD169 osteomacs, independent of osteoclasts, provide vital pro-anabolic support to osteoblasts during both bone homeostasis and repair

    Osteomacs and bone regeneration

    No full text
    Purpose of Review Mounting evidence supporting the critical contribution of macrophages, in particular osteal macrophages, to bone regeneration is reviewed. We specifically examine the potential role of macrophages in the basic multicellular units coordinating lifelong bone regeneration via remodelling and bone regeneration in response to injury. We review and discuss the distinctions between macrophage and osteoclast contributions to bone homeostasis, particularly the dichotomous role of the colony-stimulating factor 1-colony-stimulating factor 1 receptor axis

    Characterization of normal murine carpal bone development prompts re-evaluation of pathological osteolysis as the cause of human carpal-tarsal osteolysis disorders

    No full text
    Multicentric carpal-tarsal osteolysis; multicentric osteolysis, nodulosis, and arthropathy; and Winchester syndromes, skeletal dysplasias characterized by carpal/tarsal and epiphyseal abnormalities, are caused by mutations in v-maf musculoaponeurotic fibrosarcoma oncogene ortholog B (MAFB), matrix metalloproteinase (MMP) 2, and MMP14, respectively; however, the underlying pathophysiology is unclear. Osteoclast-mediated osteolysis has been regarded as the main mechanism, but does not explain the skeletal distribution. We hypothesized that MAFB, MMP-2, and MMP-14 have integral roles in carpal/tarsal and epiphyseal bone development. Normal neonatal mouse forepaws were imaged by micro-computed tomography and examined histologically. Murine forepaw ossification occurred sequentially. Subarticular regions of endochondral ossification showed morphologic and calcification patterns that were distinct from archetypical physeal endochondral ossification. This suggests that two different forms of endochondral ossification occur. The skeletal sites showing the greatest abnormality in the carpal-tarsal osteolysis syndromes are regions of subarticular ossification. Thus, abnormal bone formation in areas of subarticular ossification may explain the site-specific distribution of the carpal-tarsal osteolysis phenotype. MafB, Mmp-2, and Mmp-14 were expressed widely, and tartrate-resistant acid phosphatase staining notably was absent in the subarticular regions of the cartilage anlagen and entheses at a time point most relevant to the human osteolysis syndromes. Thus, abnormal peri-articular skeletal development and modeling, rather than excessive bone resorption, may be the underlying pathophysiology of these skeletal syndromes

    Expansion and Maintenance of Hematopoietic Stem and Progenitor Cells in Course of Long-Term Inhibition of CXCR4/CXCL12 Signaling

    Full text link
    Abstract During the past two decades peripheral blood stem cells have become the favored graft source for HSCT with 80 % of allogeneic and almost 100 % of autologous HSCT performed with mobilized blood. The critical role of the interaction between the chemokine receptor CXCR4 and its chief ligand CXCL12 for retention and migration of hematopoietic stem and progenitor cells (HSPC) has been well established. Interference with CXCR4/CXCL12 signalling iscurrentlybeing exploited as a strategy to mobilize HSPC indirectly with the most clinically relevant mobilizing agent to date, G-CSF as well as directly with the bicyclam CXCR4 antagonist Plerixafor (AMD3100).In this study, qualitative and quantitative effects of long-term pharmacologic inhibition of CXCR4/CXCL12 axis within the HSPC compartment were investigated in healthy C57BL/6 mice using the non-peptidic small molecule CXCR4 antagonists Plerixafor and ALT1188 along with the Protein-EpitopeMimeticsInhibitor POL5551. Up to 12-14 fold higher mobilization efficiency was achieved by applying the antagonists via two weeks of continuous infusion (up to 8-10x104 CFU-C and LSK/ml) as compared to bolus treatment (4-6x103 CFU-C and LSK/ml) or 5-day course of G-CSF (3-6x103 CFU-C/ml).Despite dramatic increase in numbers of circulating HSPC, the BM HSPC pool dis not decrease; in fact it expanded up to 2-4-fold compared to steady state reservoir (sham-operated control mice) as measured by immunophenotypical (LSK SLAM) and functional (e.g. serial competitive transplantation) properties of the cells. Thus, in contrast to genetically CXCR4 ablatedHSPC, the reversible long-term blockade of the receptor did not diminish the long-term repopulating capacity of HSPC. Cell cycle analysis showed a 2-3-fold increase in cycling activity of BM HSPC: only 10-20% of LSK and 30-40 % of LSK SLAM cells were found to be quiescent (in G0 phase of the cell cycle) after two weeks of CXCR4 antagonist infusion versus 50-60 % of LSK and 70 % of LSK SLAM found in G0 under homeostatic conditions. This increased proliferation was very similar to the one induced transiently at day 3 G-CSF treatmentand would conceivably explain the sustained mobilization without concomitant depletion of the BM HSPC pool. Profiling of differentially treated BM HSC (LSK SLAM) via microarray analysis did not reveal substantial effects of CXCR4 inhibitor infusion on the expression signature. Ofnote, major cytological changes typically associated with G-CSF induced mobilization, e.g. depletion of bone lining osteoblast lineage cells and macrophages, were not detected in continuous infusion of POL5551 exposed BM suggesting limitedeffects within the BM niche compartment. Moreover analysis of the BM HSPC after different washout periods at the end of continuous infusion treatment revealed a rapid (within 1-3 days after discontinuation of infusion) reestablishment of steady state HSPC numbers in the BM.Our data suggest that prolonged pharmacologic blockade of the CXCR4/CXCL12 axis using multiple small molecule inhibitorsrepresents an approach thatreleasesHSPCwith efficiency superiorto any other knownmobilization strategybut also may serve as an effective method induce cell cycling and thus expand BM HSPCs. Figure Competitive transplantation of POL5551 treated andcontrol BM (n=5 recipients per group, mean±SEM) Figure. Competitive transplantation of POL5551 treated andcontrol BM (n=5 recipients per group, mean±SEM) Disclosures Levesque: GlycoMimetics: Equity Ownership. </jats:sec

    Induction of osteoblast apoptosis stimulates macrophage efferocytosis and paradoxical bone formation

    No full text
    Abstract Apoptosis is crucial for tissue homeostasis and organ development. In bone, apoptosis is recognized to be a main fate of osteoblasts, yet the relevance of this process remains underexplored. Using our murine model with inducible Caspase 9, the enzyme that initiates intrinsic apoptosis, we triggered apoptosis in a proportion of mature osteocalcin (OCN+) osteoblasts and investigated the impact on postnatal bone development. Osteoblast apoptosis stimulated efferocytosis by osteal macrophages. A five-week stimulation of OCN+ osteoblast apoptosis in 3-week-old male and female mice significantly enhanced vertebral bone formation while increasing osteoblast precursors. A similar treatment regimen to stimulate osterix+ cell apoptosis had no impact on bone volume or density. The vertebral bone accrual following stimulation of OCN+ osteoblast apoptosis did not translate in improved mechanical strength due to disruption of the lacunocanalicular network. The observed bone phenotype was not influenced by changes in osteoclasts but was associated with stimulation of macrophage efferocytosis and vasculature formation. Phenotyping of efferocytic macrophages revealed a unique transcriptomic signature and expression of factors including VEGFA. To examine whether macrophages participated in the osteoblast precursor increase following osteoblast apoptosis, macrophage depletion models were employed. Depletion of macrophages via clodronate-liposomes and the CD169-diphtheria toxin receptor mouse model resulted in marked reduction in leptin receptor+ and osterix+ osteoblast precursors. Collectively, this work demonstrates the significance of osteoblast turnover via apoptosis and efferocytosis in postnatal bone formation. Importantly, it exposes the potential of targeting this mechanism to promote bone anabolism in the clinical setting
    corecore