73 research outputs found

    Constraints on the Ultra-High Energy Neutrino Flux from Gamma-Ray Bursts from a Prototype Station of the Askaryan Radio Array

    Get PDF
    We report on a search for ultra-high-energy (UHE) neutrinos from gamma-ray bursts (GRBs) in the data set collected by the Testbed station of the Askaryan Radio Array (ARA) in 2011 and 2012. From 57 selected GRBs, we observed no events that survive our cuts, which is consistent with 0.12 expected background events. Using NeuCosmA as a numerical GRB reference emission model, we estimate upper limits on the prompt UHE GRB neutrino fluence and quasi-diffuse flux from 10710^{7} to 101010^{10} GeV. This is the first limit on the prompt UHE GRB neutrino quasi-diffuse flux above 10710^{7} GeV.Comment: 14 pages, 8 figures, Published in Astroparticle Physics Journa

    Performance of two Askaryan Radio Array stations and first results in the search for ultra-high energy neutrinos

    Get PDF
    Ultra-high energy neutrinos are interesting messenger particles since, if detected, they can transmit exclusive information about ultra-high energy processes in the Universe. These particles, with energies above 1016eV10^{16}\mathrm{eV}, interact very rarely. Therefore, detectors that instrument several gigatons of matter are needed to discover them. The ARA detector is currently being constructed at South Pole. It is designed to use the Askaryan effect, the emission of radio waves from neutrino-induced cascades in the South Pole ice, to detect neutrino interactions at very high energies. With antennas distributed among 37 widely-separated stations in the ice, such interactions can be observed in a volume of several hundred cubic kilometers. Currently 3 deep ARA stations are deployed in the ice of which two have been taking data since the beginning of the year 2013. In this publication, the ARA detector "as-built" and calibrations are described. Furthermore, the data reduction methods used to distinguish the rare radio signals from overwhelming backgrounds of thermal and anthropogenic origin are presented. Using data from only two stations over a short exposure time of 10 months, a neutrino flux limit of 3⋅10−6GeV/(cm2 s sr)3 \cdot 10^{-6} \mathrm{GeV} / (\mathrm{cm^2 \ s \ sr}) is calculated for a particle energy of 10^{18}eV, which offers promise for the full ARA detector.Comment: 21 pages, 34 figures, 1 table, includes supplementary materia

    Low-threshold ultrahigh-energy neutrino search with the Askaryan Radio Array

    Get PDF
    In the pursuit of the measurement of the still-elusive ultrahigh-energy (UHE) neutrino flux at energies of order EeV, detectors using the in-ice Askaryan radio technique have increasingly targeted lower trigger thresholds. This has led to improved trigger-level sensitivity to UHE neutrinos. Working with data collected by the Askaryan Radio Array (ARA), we search for neutrino candidates at the lowest threshold achieved to date, leading to improved analysis-level sensitivities. A neutrino search on a data set with 208.7 days of livetime from the reduced-threshold fifth ARA station is performed, achieving a 68% analysis efficiency over all energies on a simulated mixed-composition neutrino flux with an expected background of 0.10-0.04+0.06 events passing the analysis. We observe one event passing our analysis and proceed to set a neutrino flux limit using a Feldman-Cousins construction. We show that the improved trigger-level sensitivity can be carried through an analysis, motivating the phased array triggering technique for use in future radio-detection experiments. We also include a projection using all available data from this detector. Finally, we find that future analyses will benefit from studies of events near the surface to fully understand the background expected for a large-scale detector
    • …
    corecore