16,831 research outputs found

    Mutual information for examining correlations in DNA

    Full text link
    This paper examines two methods for finding whether long-range correlations exist in DNA: a fractal measure and a mutual information technique. We evaluate the performance and implications of these methods in detail. In particular we explore their use comparing DNA sequences from a variety of sources. Using software for performing in silico mutations, we also consider evolutionary events leading to long range correlations and analyse these correlations using the techniques presented. Comparisons are made between these virtual sequences, randomly generated sequences, and real sequences. We also explore correlations in chromosomes from different species.Comment: 8 pages, 3 figure

    Charge redistribution in the formation of one-dimensional lithium wires on Cu(001)

    Get PDF
    We describe the formation of one-dimensional lithium wires on a Cu(001) substrate, providing an atomic-scale description of the onset of metallization in this prototypical adsorption system. A combination of helium atom scattering and density-functional theory reveals pronounced changes in the electronic charge distribution on the formation of the c(5√2×√2)R45° Li/Cu(001) structure, as in-plane bonds are created. Charge donation from Li-substrate bonds is found to facilitate the formation of stable, bonded, and depolarized chains of Li adatoms that coexist with an interleaved phase of independent adatoms. The resultant overlayer has a commensurate charge distribution and lattice modulations but differs fundamentally from structurally similar charge-density wave systems

    Giant Fluctuations of Coulomb Drag in a Bilayer System

    Full text link
    We have observed reproducible fluctuations of the Coulomb drag, both as a function of magnetic field and electron concentration, which are a manifestation of quantum interference of electrons in the layers. At low temperatures the fluctuations exceed the average drag, giving rise to random changes of the sign of the drag. The fluctuations are found to be much larger than previously expected, and we propose a model which explains their enhancement by considering fluctuations of local electron properties.Comment: 10 pages, 4 figure

    Parrondo-like behavior in continuous-time random walks with memory

    Get PDF
    The Continuous-Time Random Walk (CTRW) formalism can be adapted to encompass stochastic processes with memory. In this article we will show how the random combination of two different unbiased CTRWs can give raise to a process with clear drift, if one of them is a CTRW with memory. If one identifies the other one as noise, the effect can be thought as a kind of stochastic resonance. The ultimate origin of this phenomenon is the same of the Parrondo's paradox in game theoryComment: 8 pages, 3 figures, revtex; enlarged and revised versio

    Tuning the electrically evaluated electron Lande g factor in GaAs quantum dots and quantum wells of different well widths

    Full text link
    We evaluate the Lande g factor of electrons in quantum dots (QDs) fabricated from GaAs quantum well (QW) structures of different well width. We first determine the Lande electron g factor of the QWs through resistive detection of electron spin resonance and compare it to the enhanced electron g factor determined from analysis of the magneto-transport. Next, we form laterally defined quantum dots using these quantum wells and extract the electron g factor from analysis of the cotunneling and Kondo effect within the quantum dots. We conclude that the Lande electron g factor of the quantum dot is primarily governed by the electron g factor of the quantum well suggesting that well width is an ideal design parameter for g-factor engineering QDs

    A vocabulary for the configuration of net tows for collecting plankton and micronekton

    Get PDF
    Collection of zooplankton is done using a wide array of instrumentation. To ensure the long-term value of zooplankton data, metadata about what the data are and when, where, and how the data were collected, plus the use of a domain-specific, controlled vocabulary is essential. It is especially important to use a controlled “deployment” vocabulary when plankton nets are used to collect data, and here we present a vocabulary of net deployment terms

    Minimal Brownian Ratchet: An Exactly Solvable Model

    Get PDF
    We develop an exactly-solvable three-state discrete-time minimal Brownian ratchet (MBR), where the transition probabilities between states are asymmetric. By solving the master equations we obtain the steady-state probabilities. Generally the steady-state solution does not display detailed balance, giving rise to an induced directional motion in the MBR. For a reduced two-dimensional parameter space we find the null-curve on which the net current vanishes and detailed balance holds. A system on this curve is said to be balanced. On the null-curve, an additional source of external random noise is introduced to show that a directional motion can be induced under the zero overall driving force. We also indicate the off-balance behavior with biased random noise.Comment: 4 pages, 4 figures, RevTex source, General solution added. To be appeared in Phys. Rev. Let
    corecore