17 research outputs found

    Different frequencies and triggers of canyon filling and flushing events in Nazaré Canyon, offshore Portugal

    Get PDF
    Submarine canyons are one of the most important pathways for sediment transport into ocean basins. For this reason, understanding canyon architecture and sedimentary processes has importance for sediment budgets, carbon cycling, and geohazard assessment. Despite increasing knowledge of turbidity current triggers, the down-canyon variability in turbidity current frequency within most canyon systems is not well constrained. New AMS radiocarbon chronologies from canyon sediment cores illustrate significant variability in turbidity current frequency within Nazaré Canyon through time. Generalised linear models and Cox proportional hazards models indicate a strong influence of global sea level on the frequency of turbidity currents that fill the canyon. Radiocarbon ages from basin sediment cores indicate that larger, canyon-flushing turbidity currents reaching the Iberian Abyssal Plain have a significantly longer average recurrence interval than turbidity currents that fill the canyon. The recurrence intervals of these canyon-flushing turbidity currents also appear to be unaffected by long-term changes in global sea level. Furthermore, canyon-flushing and canyon-filling have very different statistical distributions of recurrence intervals. This indicates that the factors triggering, and thus controlling the frequency of canyon-flushing and canyon-filling events are very different. Canyon-filling appears to be predominantly triggered by sediment instability during sea level lowstand, and by storm and nepheloid transport during the present day highstand. Canyon-flushing exhibits time-independent behaviour. This indicates that a temporally random process, signal shredding, or summation of non-random processes that cannot be discerned from a random signal, are triggering canyon flushing events

    Eustatic sea-level controls on the flushing of a shelf-incising submarine canyon

    Get PDF
    Turbidity currents are the principal processes responsible for carving submarine canyons and maintaining them over geological time scales. The turbidity currents that maintain or “flush” submarine canyons are some of the most voluminous sediment transport events on Earth. Long-term controls on the frequency and triggers of canyon-flushing events are poorly understood in most canyon systems due to a paucity of long sedimentary records. Here, we analyzed a 160-m-long Ocean Drilling Program (ODP) core to determine the recurrence intervals of canyon-flushing events in the Nazaré Canyon over the last 1.8 m.y. We then investigated the role of global eustatic sea level in controlling the frequency and magnitude of these canyon-flushing events. Canyon-flushing turbidity currents that reach the Iberian Abyssal Plain had an average recurrence interval of 2770 yr over the last 1.8 m.y. Previous research has documented no effect of global eustatic sea level on the recurrence rate of canyon flushing. However, we find that sharp changes in global eustatic sea level during the mid-Pleistocene transition (1.2–0.9 Ma) were associated with more frequent canyon-flushing events. The change into high-amplitude, long-periodicity sea-level variability during the mid-Pleistocene transition may have remobilized large volumes of shelf sediment via subaerial weathering, and temporarily increased the frequency and magnitude of canyon-flushing turbidity currents. Turbidite recurrence intervals in the Iberian Abyssal Plain have a lognormal distribution, which is fundamentally different from the exponential distribution of recurrence intervals observed in other basin turbidite records. The lognormal distribution of turbidite recurrence intervals seen in the Iberian Abyssal Plain is demonstrated to result from the variable runout distance of turbidity currents, such that distal records are less complete, with possible influence from diverse sources or triggering mechanisms. The changing form of turbidite recurrence intervals at different locations down the depositional system is important because it ultimately determines the probability of turbidity current–related geohazards

    Age determination, hemipelagic intervals and turbidite analysis from different sediment cores of the Nazare Canyon, offshore Portugal

    No full text
    Submarine canyons are one of the most important pathways for sediment transport into ocean basins. For this reason, understanding canyon architecture and sedimentary processes has importance for sediment budgets, carbon cycling, and geohazard assessment. Despite increasing knowledge of turbidity current triggers, the down-canyon variability in turbidity current frequency within most canyon systems is not well constrained. New AMS radiocarbon chronologies from canyon sediment cores illustrate significant variability in turbidity current frequency within Nazaré Canyon through time. Generalised linear models and Cox proportional hazards models indicate a strong influence of global sea level on the frequency of turbidity currents that fill the canyon. Radiocarbon ages from basin sediment cores indicate that larger, canyon-flushing turbidity currents reaching the Iberian Abyssal Plain have a significantly longer average recurrence interval than turbidity currents that fill the canyon. The recurrence intervals of these canyon-flushing turbidity currents also appear to be unaffected by long-term changes in global sea level. Furthermore, canyon-flushing and canyon-filling have very different statistical distributions of recurrence intervals. This indicates that the factors triggering, and thus controlling the frequency of canyon-flushing and canyon-filling events are very different. Canyon-filling appears to be predominantly triggered by sediment instability during sea level lowstand, and by storm and nepheloid transport during the present day highstand. Canyon-flushing exhibits time-independent behaviour. This indicates that a temporally random process, signal shredding, or summation of non-random processes that cannot be discerned from a random signal, are triggering canyon flushing events
    corecore