3 research outputs found

    Calvaria Critical Size Defects Regeneration Using Collagen Membranes to Assess the Osteopromotive Principle: An Animal Study

    No full text
    Guided bone regeneration (GBR) is a common practice in implantology, and it is necessary to use membranes in this process. The present study aimed to evaluate the osteopromotive principle of two porcine collagen membranes in critical-size defects at rats calvaria. Ninety-six Albinus Wistar rats were divided into BG (positive control), JS, CS, and CG (negative control) groups and were sacrificed at 7, 15, 30, and 60 days postoperatively. The samples were assessed by histological, histometric, immunohistochemical, and microtomographic analyses. More intense inflammatory profile was seen in the JS and CS groups (p p = 0.193), while CS did not demonstrate the capacity to promote bone formation. At the immunohistochemical analysis, the CS showed mild labeling for osteocalcin (OC) and osteopontin (OP), the JS demonstrated mild to moderate for OC and OP and the BG demonstrated moderate to intense for OC and OP. The tridimensional analysis found the lowest average for the total volume of newly formed bone in the CS (84,901 mm2), compared to the BG (319,834 mm2) (p < 0.05). We conclude that the different thicknesses and treatment techniques of each membrane may interfere with its biological behavior

    Physical resistance training-induced changes in lipids metabolism pathways and apoptosis in prostate

    No full text
    Altered lipid metabolism is an important characteristic of neoplastic cells, with androgens and growth factors being major regulatory agents of the lipid metabolism process. We investigated the effect of physical resistance training on lipid metabolism and apoptosis in the adult Wistar rat prostate. Two experimental groups represented sedentary and physical resistance training. Three days per week for 13 weeks, rats performed jumps in water carrying a weight load strapped to their chests as part of a physical resistance exercise protocol. Two days after the last training session, rats were anesthetized and sacrificed for blood and prostate analysis. Physical exercise improved feeding efficiency, decreased weight gain, regulated the serum-lipid profile, and modulated insulin-like growth factor-1 (IGF-1) and free testosterone concentration. Furthermore, upregulation of cluster of differentiation 36 (CD36), sterol regulatory element binding protein-1 (SREBP-1), sterol regulatory element-binding protein cleavage-activating protein (SCAP), and reduced lysosome membrane protein (LIMPII) expression were also observed in the blood and prostates of trained rats. Consistent with these results, caspase-3 expression was upregulating and the BCL-2/Bax index ratio was decreased in trained rats relative to sedentary animals. Physical exercise improved feeding efficiency, decreased weight gain, regulated the serum-lipid profile, and modulated insulin-like growth factor-1 (IGF-1) and free testosterone concentration. Furthermore, upregulation of cluster of differentiation 36 (CD36), sterol regulatory element binding protein-1 (SREBP-1), sterol regulatory element-binding protein cleavage-activating protein (SCAP), and reduced lysosome membrane protein (LIMPII) expression were also observed in the blood and prostates of trained rats. Consistent with these results, caspase-3 expression was upregulating and the BCL-2/Bax index ratio was decreased in trained rats relative to sedentary animals191COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP00108/00479-6; 13/25927-0This study was supported by FAPESP - São Paulo Research Foundation (Proc. 08/00479–6), (Proc.13/25927–0) and was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance code 00
    corecore