16 research outputs found

    Burosumab in management of X-linked hypophosphataemia: a retrospective cohort study of growth and serum phosphate levels

    Get PDF
    BACKGROUND: Burosumab, an antifibroblast growth factor 23 monoclonal antibody, improves rickets severity, symptoms and growth in children with X-linked hypophosphataemia (XLH) followed up to 64 weeks in clinical trials. International dosing guidance recommends targeting normal serum phosphate concentration; however, some children may not achieve this despite maximal dosing. This study compares clinical outcomes in children with XLH on long-term burosumab treatment who achieved normal phosphate versus those who did not. METHODS: Single-centre retrospective review of a large paediatric cohort with XLH treated with burosumab. We evaluated growth and biochemical markers of bone health in those who did compared with those who did not achieve normal plasma phosphate concentration. RESULTS: Fifty-five children with XLH with median age of 11.7 (IQR 6.8-15.5) years were included. 27 (49%) had low plasma phosphate concentration, and 27 (49%) had normal phosphate after a median burosumab treatment duration of 3.3 (IQR 2.6-3.7) years. 1 (2%) did not have a recent phosphate level recorded. No difference in growth was found between normal and abnormal phosphate groups (p=0.9). CONCLUSIONS: Young children with XLH experience sustained growth on long-term burosumab treatment, although without normal plasma phosphate concentration in many. Consideration should be made to changing burosumab dosing recommendations to target normalisation of alkaline phosphatase, as opposed to plasma phosphate concentration

    A new multi-system disorder caused by the Gαs mutation p.F376V

    Get PDF
    Context The alpha-subunit of the stimulatory G-protein (Gαs) links numerous receptors to adenylyl cyclase. Gαs, encoded by GNAS, is expressed predominantly from the maternal allele in certain tissues. Thus, maternal heterozygous loss-of-function mutations cause hormonal resistance, as in pseudohypoparathyroidism type Ia, while somatic gain-of-function mutations cause hormone-independent endocrine stimulation, as in McCune-Albright Syndrome. Objective We here report two unrelated boys presenting with a new combination of clinical findings that suggest both gain and loss of Gαs function. Design, Setting Clinical features were studied and sequencing of GNAS was performed. Signaling capacities of wild-type and mutant-Gαs were determined in the presence of different G protein-coupled receptors (GPCRs) under basal and agonist-stimulated conditions. Results Both unrelated patients presented with unexplained hyponatremia in infancy, followed by severe early-onset gonadotrophin-independent precocious puberty and skeletal abnormalities. An identical heterozygous de novo variant (c.1136T>G; p.F376V) was found on the maternal GNAS allele, in both patients; this resulted in a clinical phenotype that differ from known Gαs-related diseases and suggested gain-of-function at the receptors for vasopressin (V2R) and lutropin (LHCGR), yet increased serum parathyroid hormone (PTH) concentrations indicative of impaired proximal tubular PTH1 receptor (PTH1R) function. In vitro studies demonstrated that Gαs-F376V enhanced ligand-independent signaling at the PTH1R, LHCGR and V2R and, at the same time, blunted ligand-dependent responses. Structural homology modeling suggested mutation-induced modifications at the C-terminal α5-helix of Gαs that are relevant for interaction with GPCRs and signal transduction. Conclusions The Gαs p.F376V mutation causes a previously unrecognized multi-system disorder

    Juvenile Paget’s disease with compound heterozygous mutations in TNFRSF11B presenting with recurrent clavicular fractures and a mild skeletal phenotype

    Get PDF
    Juvenile Paget’s disease (JPD) is a rare recessively-inherited bone dysplasia. The great majority of cases described to date have had homozygous mutations in TNFRSF11B, the gene encoding osteoprotegerin. We describe a boy who presented with recurrent clavicular fractures following minor trauma (8 fractures from age 2 to 11). He was of normal height and despite mild lateral bowing of the thighs and anterior bowing of the shins he remained physically active. Abnormal modelling was noted in ribs and humeri on clavicular radiographs, and a skeletal survey at the age of 7 showed generalised diaphyseal expansion of the long bones with thickening of the periosteal and endosteal surfaces of the cortices. On biochemical evaluation, serum alkaline phosphatase was noted to be persistently elevated. The diagnosis of JPD was confirmed by the finding of compound heterozygous mutations in TNFRSF11B: a maternally-inherited A > G missense mutation at position 1 of the first amino acid codon (previously reported) and a paternally-inherited splice acceptor site mutation in intron 3 at a highly conserved position (not previously reported). Bioinformatics analysis suggested both mutations were disease-causing. Compound heterozygote mutations in TNFRSF11B causing JPD have been previously reported only once – in a boy who also had a relatively mild skeletal phenotype. The milder features may lead to delay in diagnosis and diagnostic confusion with other entities, but the extraskeletal features of JPD may nonetheless develop
    corecore