425 research outputs found

    Localization length and impurity dielectric susceptibility in the critical regime of the metal-insulator transition in homogeneously doped p-type Ge

    Full text link
    We have determined the localization length \xi and the impurity dielectric susceptibility \chi_{\rm imp} as a function of Ga acceptor concentrations (N) in nominally uncompensated ^{70}Ge:Ga just below the critical concentration (N_c) for the metal-insulator transition. Both \xi and \chi_{\rm imp} diverge at N_c according to the functions \xi\propto(1-N/N_c)^{-\nu} and \chi_{\rm imp}\propto(N_c/N-1)^{-\zeta}, respectively, with \nu=1.2\pm0.3 and \zeta=2.3\pm0.6 for 0.99N_c< N< N_c. Outside of this region (N<0.99N_c), the values of the exponents drop to \nu=0.33\pm0.03 and \zeta=0.62\pm0.05. The effect of the small amount of compensating dopants that are present in our nominally uncompensated samples, may be responsible for the change of the critical exponents at N\approx0.99N_c.Comment: RevTeX, 4 pages with 5 embedded figures, final version (minor changes

    Vibrational properties of amorphous silicon from tight-binding O(N) calculation

    Full text link
    We present an O(N) algorithm to study the vibrational properties of amorphous silicon within the framework of tight-binding approach. The dynamical matrix elements have been evaluated numerically in the harmonic approximation exploiting the short-range nature of the density matrix to calculate the vibrational density of states which is then compared with the same obtained from a standard O(N4N^4) algorithm. For the purpose of illustration, an 1000-atom model is studied to calculate the localization properties of the vibrational eigenstates using the participation numbers calculation.Comment: 5 pages including 5 ps figures; added a figure and a few references; accepted in Phys. Rev.

    Gravitational Leptogenesis and Neutrino Mass Limit

    Full text link
    Recently Davoudiasl {\it et al} \cite{steinhardt} have introduced a new type of interaction between the Ricci scalar RR and the baryon current JμJ^{\mu}, μRJμ{\partial_\mu R} J^{\mu} and proposed a mechanism for baryogenesis, the gravitational baryogenesis. Generally, however, μR\partial_{\mu} R vanishes in the radiation dominated era. In this paper we consider a generalized form of their interaction, μf(R)Jμ\partial_{\mu}f(R)J^{\mu} and study again the possibility of gravitational baryo(lepto)genesis. Taking f(R)lnRf(R)\sim \ln R, we will show that μf(R)μR/R\partial_{\mu}f(R)\sim \partial_{\mu} R/R does not vanish and the required baryon number asymmetry can be {\it naturally} generated in the early universe.Comment: 4 page

    Long Range Magnetic Order and the Darwin Lagrangian

    Full text link
    We simulate a finite system of NN confined electrons with inclusion of the Darwin magnetic interaction in two- and three-dimensions. The lowest energy states are located using the steepest descent quenching adapted for velocity dependent potentials. Below a critical density the ground state is a static Wigner lattice. For supercritical density the ground state has a non-zero kinetic energy. The critical density decreases with NN for exponential confinement but not for harmonic confinement. The lowest energy state also depends on the confinement and dimension: an antiferromagnetic cluster forms for harmonic confinement in two dimensions.Comment: 5 figure

    Influence of next-nearest-neighbor electron hopping on the static and dynamical properties of the 2D Hubbard model

    Full text link
    Comparing experimental data for high temperature cuprate superconductors with numerical results for electronic models, it is becoming apparent that a hopping along the plaquette diagonals has to be included to obtain a quantitative agreement. According to recent estimations the value of the diagonal hopping tt' appears to be material dependent. However, the values for tt' discussed in the literature were obtained comparing theoretical results in the weak coupling limit with experimental photoemission data and band structure calculations. The goal of this paper is to study how tt' gets renormalized as the interaction between electrons, UU, increases. For this purpose, the effect of adding a bare diagonal hopping tt' to the fully interacting two dimensional Hubbard model Hamiltonian is investigated using numerical techniques. Positive and negative values of tt' are analyzed. Spin-spin correlations, n(k)n(\bf{k}), n\langle n\rangle vs μ\mu, and local magnetic moments are studied for values of U/tU/t ranging from 0 to 6, and as a function of the electronic density. The influence of the diagonal hopping in the spectral function A(k,ω)A(\bf{k},\omega) is also discussed, and the changes in the gap present in the density of states at half-filling are studied. We introduce a new criterion to determine probable locations of Fermi surfaces at zero temperature from n(k)n(\bf{k}) data obtained at finite temperature. It appears that hole pockets at k=(π/2,π/2){\bf{k}}=(\pi/2,\pi/2) may be induced for negative tt' while a positive tt' produces similar features at k=(π,0){\bf{k}}=(\pi,0) and (0,π)(0,\pi). Comparisons with the standard 2D Hubbard (t=0t'=0) model indicate that a negative tt' hopping amplitude appears to be dynamically generated. In general, we conclude that it is very dangerous to extract a bare parameter of the Hamiltonian (t)(t') from PES data whereComment: 9 pages (RevTex 3.0), 12 figures (postscript), files packed with uufile

    Thermal leptogenesis in a model with mass varying neutrinos

    Full text link
    In this paper we consider the possibility of neutrino mass varying during the evolution of the Universe and study its implications on leptogenesis. Specifically, we take the minimal seesaw model of neutrino masses and introduce a coupling between the right-handed neutrinos and the dark energy scalar field, the Quintessence. In our model, the right-handed neutrino masses change as the Quintessence scalar evolves. We then examine in detail the parameter space of this model allowed by the observed baryon number asymmetry. Our results show that it is possible to lower the reheating temperature in this scenario in comparison with the case that the neutrino masses are unchanged, which helps solve the gravitino problem. Furthermore, a degenerate neutrino mass patten with mim_i larger than the upper limit given in the minimal leptogenesis scenario is permitted.Comment: 18 pages, 7 figures, version to appear in PR

    Pulsars as Fantastic Objects and Probes

    Full text link
    Pulsars are fantastic objects, which show the extreme states of matters and plasma physics not understood yet. Pulsars can be used as probes for the detection of interstellar medium and even the gravitational waves. Here I review the basic facts of pulsars which should attract students to choose pulsar studies as their future projects.Comment: Invited Lecture on the "First Kodai-Trieste Workshop on Plasma Astrophysics", Kodaikanal Obs, India. Aug.27-Sept.7th, 2007. In: "Turbulence, Dynamos, Accretion Disks, Pulsars and Collective Plasma Processes". Get a copy from: http://www.springerlink.com/content/978-1-4020-8867-

    Froude supercritical flow processes and sedimentary structures: new insights from experiments with a wide range of grain sizes

    Get PDF
    Recognition of Froude supercritical flow deposits in environments that range from rivers to the ocean floor has triggered a surge of interest in their flow processes, bedforms and sedimentary structures. Interpreting these supercritical flow deposits is especially important because they often represent the most powerful flows in the geological record. Insights from experiments are key to reconstruct palaeo‐flow processes from the sedimentary record. So far, all experimentally produced supercritical flow deposits are of a narrow grain‐size range (fine to medium sand), while deposits in the rock record often consist of a much wider grain‐size distribution. This paper presents results of supercritical‐flow experiments with a grain‐size distribution from clay to gravel. These experiments show that cyclic step instabilities can produce more complex and a larger variety of sedimentary structures than the previously suggested backsets and ‘scour and fill’ structures. The sedimentary structures are composed of irregular lenses, mounds and wedges with backsets and foresets, as well as undulating planar to low‐angle upstream and downstream dipping laminae. The experiments also demonstrate that the Froude number is not the only control on the sedimentary structures formed by supercritical‐flow processes. Additional controls include the size and migration rate of the hydraulic jump and the substrate cohesion. This study further demonstrates that Froude supercritical flow promotes suspension transport of all grain sizes, including gravels. Surprisingly, it was observed that all grain sizes were rapidly deposited just downstream of hydraulic jumps, including silt and clay. These results expand the range of dynamic mud deposition into supercritical‐flow conditions, where local transient shear stress reduction rather than overall flow waning conditions allow for deposition of fines. Comparison of the experimental deposits with outcrop datasets composed of conglomerates to mudstones, shows significant similarities and highlights the role of hydraulic jumps, rather than overall flow condition changes, in producing lithologically and geometrically complex stratigraphy

    How generic is cosmic string formation in SUSY GUTs

    Full text link
    We study cosmic string formation within supersymmetric grand unified theories. We consider gauge groups having a rank between 4 and 8. We examine all possible spontaneous symmetry breaking patterns from the GUT down to the standard model gauge group. Assuming standard hybrid inflation, we select all the models which can solve the GUT monopole problem, lead to baryogenesis after inflation and are consistent with proton lifetime measurements. We conclude that in all acceptable spontaneous symmetry breaking schemes, cosmic string formation is unavoidable. The strings which form at the end of inflation have a mass which is proportional to the inflationary scale. Sometimes, a second network of strings form at a lower scale. Models based on gauge groups which have rank greater than 6 can lead to more than one inflationary era; they all end by cosmic string formation.Comment: 31 pages, Latex, submitted to PR
    corecore