1,434 research outputs found
A dedicated haem lyase is required for the maturation of a novel bacterial cytochrome c with unconventional covalent haem binding
In bacterial c-type cytochromes, the haem cofactor is covalently attached via two cysteine residues organized in a haem c-binding motif. Here, a novel octa-haem c protein, MccA, is described that contains only seven conventional haem c-binding motifs (CXXCH), in addition to several single cysteine residues and a conserved CH signature. Mass spectrometric analysis of purified MccA from Wolinella succinogenes suggests that two of the single cysteine residues are actually part of an unprecedented CX15CH sequence involved in haem c binding. Spectroscopic characterization of MccA identified an unusual high-potential haem c with a red-shifted absorption maximum, not unlike that of certain eukaryotic cytochromes c that exceptionally bind haem via only one thioether bridge. A haem lyase gene was found to be specifically required for the maturation of MccA in W. succinogenes. Equivalent haem lyase-encoding genes belonging to either the bacterial cytochrome c biogenesis system I or II are present in the vicinity of every known mccA gene suggesting a dedicated cytochrome c maturation pathway. The results necessitate reconsideration of computer-based prediction of putative haem c-binding motifs in bacterial proteomes
Scaling property and peculiar velocity of global monopoles
We investigate the scaling property of global monopoles in the expanding
universe. By directly solving the equations of motion for scalar fields, we
follow the time development of the number density of global monopoles in the
radiation dominated (RD) universe and the matter dominated (MD) universe. It is
confirmed that the global monopole network relaxes into the scaling regime and
the number per hubble volume is a constant irrespective of the cosmic time. The
number density of global monopoles is given by during the RD era and during the MD era. We also examine the peculiar velocity of global
monopoles. For this purpose, we establish a method to measure the peculiar
velocity by use of only the local quantities of the scalar fields. It is found
that during the RD era and during
the MD era. By use of it, a more accurate analytic estimate for the number
density of global monopoles is obtained.Comment: 17 pages, 8 figures, to appear in Phys. Rev.
Lattice-switch Monte Carlo
We present a Monte Carlo method for the direct evaluation of the difference
between the free energies of two crystal structures. The method is built on a
lattice-switch transformation that maps a configuration of one structure onto a
candidate configuration of the other by `switching' one set of lattice vectors
for the other, while keeping the displacements with respect to the lattice
sites constant. The sampling of the displacement configurations is biased,
multicanonically, to favor paths leading to `gateway' arrangements for which
the Monte Carlo switch to the candidate configuration will be accepted. The
configurations of both structures can then be efficiently sampled in a single
process, and the difference between their free energies evaluated from their
measured probabilities. We explore and exploit the method in the context of
extensive studies of systems of hard spheres. We show that the efficiency of
the method is controlled by the extent to which the switch conserves correlated
microstructure. We also show how, microscopically, the procedure works: the
system finds gateway arrangements which fulfill the sampling bias
intelligently. We establish, with high precision, the differences between the
free energies of the two close packed structures (fcc and hcp) in both the
constant density and the constant pressure ensembles.Comment: 34 pages, 9 figures, RevTeX. To appear in Phys. Rev.
Cosmological Evolution of Global Monopoles
We investigate the cosmological evolution of global monopoles in the
radiation dominated (RD) and matter dominated (MD) universes by numerically
solving field equations of scalar fields. It is shown that the global monopole
network relaxes into the scaling regime, unlike the gauge monopole network. The
number density of global monopoles is given by during the RD era and during the MD
era. Thus, we have confirmed that density fluctuations produced by global
monopoles become scale invariant and are given by during the RD (MD) era, where is the breaking
scale of the symmetry.Comment: 6 pages, 2 figures, to appear in Phys. Rev. D (R
Dynamics of ions in the selectivity filter of the KcsA channel
The statistical and dynamical properties of ions in the selectivity filter of the KcsA ion channel are considered on the basis of molecular dynamics (MD) simulations of the KcsA protein embedded in a lipid membrane surrounded by an ionic solution. A new approach to the derivation of a Brownian dynamics (BD) model of ion permeation through the filter is discussed, based on unbiased MD simulations. It is shown that depending on additional assumptions, ion’s dynamics can be described either by under-damped Langevin equation with constant damping and white noise or by Langevin equation with a fractional memory kernel. A comparison of the potential of the mean force derived from unbiased MD simulations with the potential produced by the umbrella sampling method demonstrates significant differences in these potentials. The origin of these differences is an open question that requires further clarifications
Orbital Wave and its Observation in Orbital Ordered Titanates and Vanadates
We present a theory of the collective orbital excitation termed orbital wave
in perovskite titanates and vanadates with the triply degenerate
orbitals. The dispersion relations of the orbital waves for the orbital ordered
LaVO, YVO and YTiO are examined in the effective spin-orbital
coupled Hamiltonians associated with the Jahn-Teller type couplings. We propose
possible scattering processes for the Raman and inelastic neutron scatterings
from the orbital wave and calculate the scattering spectra for titanates and
vanadates. It is found that both the excitation spectra and the observation
methods of the orbital wave are distinct qualitatively from those for the
orbital ordered systems.Comment: 9 pages, 7 figure
Doping-dependent study of the periodic Anderson model in three dimensions
We study a simple model for -electron systems, the three-dimensional
periodic Anderson model, in which localized states hybridize with
neighboring states. The states have a strong on-site repulsion which
suppresses the double occupancy and can lead to the formation of a Mott-Hubbard
insulator. When the hybridization between the and states increases, the
effects of these strong electron correlations gradually diminish, giving rise
to interesting phenomena on the way. We use the exact quantum Monte-Carlo,
approximate diagrammatic fluctuation-exchange approximation, and mean-field
Hartree-Fock methods to calculate the local moment, entropy, antiferromagnetic
structure factor, singlet-correlator, and internal energy as a function of the
hybridization for various dopings. Finally, we discuss the relevance of
this work to the volume-collapse phenomenon experimentally observed in
f-electron systems.Comment: 12 pages, 8 figure
Pseudogap formation of four-layer BaRuO and its electrodynamic response changes
We investiaged the optical properties of four-layer BaRuO, which shows
a fermi-liquid-like behavior at low temperature. Its optical conductivity
spectra clearly displayed the formation of a pseudogap and the development of a
coherent peak with decreasing temperature. Temperature-dependences of the
density and the scattering rate of the coherent component were
also derived. As the temperature decreases, both and decrease for
four-layer BaRuO. These electrodynamic responses were compared with those
of nine-layer BaRuO, which also shows a pseudogap formation but has an
insulator-like state at low temperature. It was found that the relative rates
of change of both and determine either metallic or insulator-like
responses in the ruthenates. The optical properties of the four-layer ruthenate
were also compared with those of other pseudogap systems, such as high
cuprates and heavy electron systems.Comment: 7 figures. submitted to Phys. Rev.
RQM description of the charge form factor of the pion and its asymptotic behavior
The pion charge and scalar form factors, and , are first
calculated in different forms of relativistic quantum mechanics. This is done
using the solution of a mass operator that contains both confinement and
one-gluon-exchange interactions. Results of calculations, based on a one-body
current, are compared to experiment for the first one. As it could be expected,
those point-form, and instant and front-form ones in a parallel momentum
configuration fail to reproduce experiment. The other results corresponding to
a perpendicular momentum configuration (instant form in the Breit frame and
front form with ) do much better. The comparison of charge and scalar
form factors shows that the spin-1/2 nature of the constituents plays an
important role. Taking into account that only the last set of results
represents a reasonable basis for improving the description of the charge form
factor, this one is then discussed with regard to the asymptotic QCD-power-law
behavior . The contribution of two-body currents in achieving the right
power law is considered while the scalar form factor, , is shown to
have the right power-law behavior in any case. The low- behavior of the
charge form factor and the pion-decay constant are also discussed.}Comment: 30 pages, 10 figure
- …
