962 research outputs found

    A guanosine 5′-triphosphate-dependent protein kinase is localized in the outer envelope membrane of pea chloroplasts

    Get PDF
    A guanosine 5-triphosphate (GTP)-dependent protein kinase was detected in preparations of outer chloroplast envelope membranes of pea (Pisum sativum L.) chloroplasts. The protein-kinase activity was capable of phosphorylating several envelope-membrane proteins. The major phosphorylated products were 23- and 32.5-kilo-dalton proteins of the outer envelope membrane. Several other envelope proteins were labeled to a lesser extent. Following acid hydrolysis of the labeled proteins, most of the label was detected as phosphoserine with only minor amounts detected as phosphothreonine. Several criteria were used to distinguish the GTP-dependent protein kinase from an ATP-dependent kinase also present in the outer envelope membrane. The ATP-dependent kinase phosphorylated a very different set of envelope-membrane proteins. Heparin inhibited the GTP-dependent kinase but had little effect upon the ATP-dependent enzyme. The GTP-dependent enzyme accepted phosvitin as an external protein substrate whereas the ATP-dependent enzyme did not. The outer membrane of the chloroplast envelope also contained a phosphotransferase capable of transferring labeled phosphate from [-32P]GTP to ADP to yield (-32P]ATP. Consequently, addition of ADP to a GTP-dependent protein-kinase assay resulted in a switch in the pattern of labeled products from that seen with GTP to that typically seen with ATP

    Structural and superconducting transition in selenium under high pressures

    Get PDF
    First-principles calculations are performed for electronic structures of two high pressure phases of solid selenium, β\beta-Po and bcc. Our calculation reproduces well the pressure-induced phase transition from β\beta-Po to bcc observed in selenium. The calculated transition pressure is 30 GPa lower than the observed one, but the calculated pressure dependence of the lattice parameters agrees fairly well with the observations in a wide range of pressure. We estimate the superconducting transition temperature TcT_{\rm c} of both the β\beta-Po and the bcc phases by calculating the phonon dispersion and the electron-phonon interaction on the basis of density-functional perturbation theory. The calculated TcT_{\rm c} shows a characteristic pressure dependence, i.e. it is rather pressure independent in the β\beta-Po phase, shows a discontinuous jump at the transition from β\beta-Po to bcc, and then decreases rapidly with increasing pressure in the bcc phase.Comment: 8 pages, 11 figure

    Radiating dipoles in photonic crystals

    Get PDF
    The radiation dynamics of a dipole antenna embedded in a Photonic Crystal are modeled by an initially excited harmonic oscillator coupled to a non--Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the Photonic Crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra are reproduced. This approach enables direct incorporation of realistic band structure computations into studies of radiative emission from atoms and molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in both the microwave and optical regimes.Comment: Phys. Rev. E, accepte

    Methods to Determine Neutrino Flux at Low Energies:Investigation of the Low ν\nu Method

    Get PDF
    We investigate the "low-ν\nu" method (developed by the CCFR/NUTEV collaborations) to determine the neutrino flux in a wide band neutrino beam at very low energies, a region of interest to neutrino oscillations experiments. Events with low hadronic final state energy ν<νcut\nu<\nu_{cut} (of 1, 2 and 5 GeV) were used by the MINOS collaboration to determine the neutrino flux in their measurements of neutrino (νμ\nu_\mu) and antineutrino (\nub_\mu) total cross sections. The lowest νμ\nu_\mu energy for which the method was used in MINOS is 3.5 GeV, and the lowest \nub_\mu energy is 6 GeV. At these energies, the cross sections are dominated by inelastic processes. We investigate the application of the method to determine the neutrino flux for νμ\nu_\mu, \nub_\mu energies as low as 0.7 GeV where the cross sections are dominated by quasielastic scattering and Δ\Delta(1232) resonance production. We find that the method can be extended to low energies by using νcut\nu_{cut} values of 0.25 and 0.50 GeV, which is feasible in fully active neutrino detectors such as MINERvA.Comment: 25 pages, 32 figures, to be published in European Physics Journal

    Charged-current neutrino-208Pb reactions

    Get PDF
    We present theoretical results on the non flux-averaged 208Pb(νe,e)208Bi^{208}Pb(\nu_{e},e^-)^{208}Bi and 208Pb(νμ,μ)208Bi^{208}Pb(\nu_{\mu},\mu^-)^{208}Bi reaction cross sections, obtained within the charge-exchange Random-Phase-Approximation. A detailed knowledge of these cross sections is important in different contexts. In particular, it is necessary to assess the possibility of using lead as a detector in future experiments on supernova neutrinos, such as OMNIS and LAND, and eventually detect neutrino oscillation signals by exploiting the spectroscopic properties of 208Bi^{208}Bi. We discuss the present status on the theoretical predictions of the reaction cross sections.Comment: 5 pages, latex, 3 figures. added discussion on present status, Submitted to Phys.Rev.

    On merging the fields of neural networks and adaptive data structures to yield new pattern recognition methodologies

    Get PDF
    The aim of this talk is to explain a pioneering exploratory research endeavour that attempts to merge two completely different fields in Computer Science so as to yield very fascinating results. These are the well-established fields of Neural Networks (NNs) and Adaptive Data Structures (ADS) respectively. The field of NNs deals with the training and learning capabilities of a large number of neurons, each possessing minimal computational properties. On the other hand, the field of ADS concerns designing, implementing and analyzing data structures which adaptively change with time so as to optimize some access criteria. In this talk, we shall demonstrate how these fields can be merged, so that the neural elements are themselves linked together using a data structure. This structure can be a singly-linked or doubly-linked list, or even a Binary Search Tree (BST). While the results themselves are quite generic, in particular, we shall, as a prima facie case, present the results in which a Self-Organizing Map (SOM) with an underlying BST structure can be adaptively re-structured using conditional rotations. These rotations on the nodes of the tree are local and are performed in constant time, guaranteeing a decrease in the Weighted Path Length of the entire tree. As a result, the algorithm, referred to as the Tree-based Topology-Oriented SOM with Conditional Rotations (TTO-CONROT), converges in such a manner that the neurons are ultimately placed in the input space so as to represent its stochastic distribution. Besides, the neighborhood properties of the neurons suit the best BST that represents the data

    Phase Behavior of Bent-Core Molecules

    Full text link
    Recently, a new class of smectic liquid crystal phases (SmCP phases) characterized by the spontaneous formation of macroscopic chiral domains from achiral bent-core molecules has been discovered. We have carried out Monte Carlo simulations of a minimal hard spherocylinder dimer model to investigate the role of excluded volume interations in determining the phase behavior of bent-core materials and to probe the molecular origins of polar and chiral symmetry breaking. We present the phase diagram as a function of pressure or density and dimer opening angle ψ\psi. With decreasing ψ\psi, a transition from a nonpolar to a polar smectic phase is observed near ψ=167\psi = 167^{\circ}, and the nematic phase becomes thermodynamically unstable for ψ<135\psi < 135^{\circ}. No chiral smectic or biaxial nematic phases were found.Comment: 4 pages Revtex, 3 eps figures (included

    Performance and Simulation of the RICE detector

    Get PDF
    The RICE experiment (Radio Ice Cherenkov Experiment) at the South Pole, co-deployed with the AMANDA experiment, seeks to detect ultra-high energy (UHE) electron neutrinos interacting in cold polar ice. Such interactions produce electromagnetic showers, which emit radio-frequency Cherenkov radiation. We describe the experimental apparatus and the procedures used to measure the neutrino flux.Comment: preprint, to be submitted to Astropart. Phy

    Lattice-switch Monte Carlo

    Full text link
    We present a Monte Carlo method for the direct evaluation of the difference between the free energies of two crystal structures. The method is built on a lattice-switch transformation that maps a configuration of one structure onto a candidate configuration of the other by `switching' one set of lattice vectors for the other, while keeping the displacements with respect to the lattice sites constant. The sampling of the displacement configurations is biased, multicanonically, to favor paths leading to `gateway' arrangements for which the Monte Carlo switch to the candidate configuration will be accepted. The configurations of both structures can then be efficiently sampled in a single process, and the difference between their free energies evaluated from their measured probabilities. We explore and exploit the method in the context of extensive studies of systems of hard spheres. We show that the efficiency of the method is controlled by the extent to which the switch conserves correlated microstructure. We also show how, microscopically, the procedure works: the system finds gateway arrangements which fulfill the sampling bias intelligently. We establish, with high precision, the differences between the free energies of the two close packed structures (fcc and hcp) in both the constant density and the constant pressure ensembles.Comment: 34 pages, 9 figures, RevTeX. To appear in Phys. Rev.

    Diffusion of gold nanoclusters on graphite

    Full text link
    We present a detailed molecular-dynamics study of the diffusion and coalescence of large (249-atom) gold clusters on graphite surfaces. The diffusivity of monoclusters is found to be comparable to that for single adatoms. Likewise, and even more important, cluster dimers are also found to diffuse at a rate which is comparable to that for adatoms and monoclusters. As a consequence, large islands formed by cluster aggregation are also expected to be mobile. Using kinetic Monte Carlo simulations, and assuming a proper scaling law for the dependence on size of the diffusivity of large clusters, we find that islands consisting of as many as 100 monoclusters should exhibit significant mobility. This result has profound implications for the morphology of cluster-assembled materials
    corecore