1,271 research outputs found
Isotropic-nematic transition in liquid crystals confined between rough walls
The effect of rough walls on the phase behaviour of a confined liquid crystal
(LC) fluid is studied using constant pressure Monte Carlo simulations. The LC
is modelled as a fluid of soft ellipsoidal molecules and the rough walls are
represented as a hard wall with a number of molecules randomly embedded in
them. It is found that the isotropic-nematic (IN) transition is shifted to
higher pressures for rougher walls.Comment: 4 pages, 4 figures Accepted in Chemical Physics Letter
Dynamics of an Unbounded Interface Between Ordered Phases
We investigate the evolution of a single unbounded interface between ordered
phases in two-dimensional Ising ferromagnets that are endowed with
single-spin-flip zero-temperature Glauber dynamics. We examine specifically the
cases where the interface initially has either one or two corners. In both
examples, the interface evolves to a limiting self-similar form. We apply the
continuum time-dependent Ginzburg-Landau equation and a microscopic approach to
calculate the interface shape. For the single corner system, we also discuss a
correspondence between the interface and the Young tableau that represents the
partition of the integers.Comment: 9 pages, 11 figures, 2-column revtex4 format. V2: references added
  and discussion section expanded slightly. Final version for PRE. V3: A few
  small additional editorial change
Surface tension of the isotropic-nematic interface
We present the first calculations of the pressure tensor profile in the
vicinity of the planar interface between isotropic liquid and nematic liquid
crystal, using Onsager's density functional theory and computer simulation.
When the liquid crystal director is aligned parallel to the interface, the
situation of lowest free energy, there is a large tension on the nematic side
of the interface and a small compressive region on the isotropic side. By
contrast, for perpendicular alignment, the tension is on the isotropic side.
There is excellent agreement between theory and simulation both in the forms of
the pressure tensor profiles, and the values of the surface tension.Comment: Minor changes; to appear in Phys. Rev. 
Anthropogenic Space Weather
Anthropogenic effects on the space environment started in the late 19th
century and reached their peak in the 1960s when high-altitude nuclear
explosions were carried out by the USA and the Soviet Union. These explosions
created artificial radiation belts near Earth that resulted in major damages to
several satellites. Another, unexpected impact of the high-altitude nuclear
tests was the electromagnetic pulse (EMP) that can have devastating effects
over a large geographic area (as large as the continental United States). Other
anthropogenic impacts on the space environment include chemical release ex-
periments, high-frequency wave heating of the ionosphere and the interaction of
VLF waves with the radiation belts. This paper reviews the fundamental physical
process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure
Ab initio Calculations of Multilayer Relaxations of Stepped Cu Surfaces
We present trends in the multilayer relaxations of several vicinals of
Cu(100) and Cu(111) of varying terrace widths and geometry. The electronic
structure calculations are based on density functional theory in the local
density approximation with norm-conserving, non-local pseudopotentials in the
mixed basis representation. While relaxations continue for several layers, the
major effect concentrates near the step and corner atoms. On all surfaces the
step atoms contract inwards, in agreement with experimental findings.
Additionally, the corner atoms move outwards and the atoms in the adjacent
chain undergo large inward relaxation. Correspondingly, the largest contraction
(4%) is in the bond length between the step atom and its bulk nearest neighbor
(BNN), while that between the corner atom and BNN is somewhat enlarged. The
surface atoms also display changes in registry of upto 1.5%. Our results are in
general in good agreement with LEED data including the controversial case of
Cu(511). Subtle differences are found with results obtained from semi-empirical
potentials.Comment: 21 pages and 3 figure
Proximity effect in ultrathin Pb/Ag multilayers within the Cooper limit
We report on transport and tunneling measurements performed on ultra-thin
Pb/Ag (strong coupled superconductor/normal metal) multilayers evaporated by
quench condensation. The critical temperature and energy gap of the
heterostructures oscillate with addition of each layer, demonstrating the
validity of the Cooper limit model in the case of multilayers. We observe
excellent agreement with a simple theory for samples with layer thickness
larger than 30\AA . Samples with single layers thinner than 30\AA deviate from
the Cooper limit theory. We suggest that this is due to the "inverse proximity
effect" where the normal metal electrons improve screening in the
superconducting ultrathin layer and thus enhance the critical temperature.Comment: 4 pages, 4 figure
Lattice Dynamics and the High Pressure Equation of State of Au
Elastic constants and zone-boundary phonon frequencies of gold are calculated
by total energy electronic structure methods to twofold compression. A
generalized force constant model is used to interpolate throughout the
Brillouin zone and evaluate moments of the phonon distribution. The moments are
used to calculate the volume dependence of the Gruneisen parameter in the fcc
solid. Using these results with ultrasonic and shock data, we formulate the
complete free energy for solid Au. This free energy is given as a set of closed
form expressions, which are valid to compressions of at least V/V_0 = 0.65 and
temperatures up to melting. Beyond this density, the Hugoniot enters the
solid-liquid mixed phase region. Effects of shock melting on the Hugoniot are
discussed within an approximate model. We compare with proposed standards for
the equation of state to pressures of ~200 GPa. Our result for the room
temperature isotherm is in very good agreement with an earlier standard of
Heinz and Jeanloz.Comment: 13 pages, 8 figures. Accepted by Phys. Rev. 
Sedimentation record in the Konkan-Kerala Basin: implications for the evolution of the Western Ghats and the Western Indian passive margin
The Konkan and Kerala Basins constitute a major depocentre for sediment from the onshore hinterland of Western India and as such provide a valuable record of the timing and magnitude of Cenozoic denudation along the continental margin. This paper presents an analysis of sedimentation in the Konkan-Kerala Basin, coupledwith a mass balance study, and numerical modelling of flexural responses to onshore denudational unloading and o¡shore sediment loading in order to test competing conceptual models for the development of high-elevation passive margins. The Konkan-Kerala Basin contains an estimated 109,000 km<sup>3</sup>; of Cenozoic clastic sediment, a volume difficult to reconcile with the denudation of a downwarped rift flank onshore, and more consistent with denudation of an elevated rift flank. We infer from modelling of the isostatic response of the lithosphere to sediment loading offshore and denudation onshore that flexure is an important component in the development of the Western Indian Margin.There is evidence for two major pulses in sedimentation: an early phase in the Palaeocene, and a second beginning in the Pliocene. The Palaeocene increase in sedimentation can be interpreted in terms of a denudational response to the rifting between India and the Seychelles, whereas the mechanism responsible for the Pliocene pulse is more enigmatic
Electronic structure of the strongly hybridized ferromagnet CeFe2
We report on results from high-energy spectroscopic measurements on CeFe2, a
system of particular interest due to its anomalous ferromagnetism with an
unusually low Curie temperature and small magnetization compared to the other
rare earth-iron Laves phase compounds. Our experimental results indicate very
strong hybridization of the Ce 4f states with the delocalized band states,
mainly the Fe 3d states. In the interpretation and analysis of our measured
spectra, we have made use of two different theoretical approaches: The first
one is based on the Anderson impurity model, with surface contributions
explicitly taken into account. The second method consists of band-structure
calculations for bulk CeFe2. The analysis based on the Anderson impurity model
gives calculated spectra in good agreement with the whole range of measured
spectra, and reveals that the Ce 4f -- Fe 3d hybridization is considerably
reduced at the surface, resulting in even stronger hybridization in the bulk
than previously thought. The band-structure calculations are ab initio
full-potential linear muffin-tin orbital calculations within the
local-spin-density approximation of the density functional. The Ce 4f electrons
were treated as itinerant band electrons. Interestingly, the Ce 4f partial
density of states obtained from the band-structure calculations also agree well
with the experimental spectra concerning both the 4f peak position and the 4f
bandwidth, if the surface effects are properly taken into account. In addition,
results, notably the partial spin magnetic moments, from the band-structure
calculations are discussed in some detail and compared to experimental findings
and earlier calculations.Comment: 10 pages, 8 figures, to appear in Phys. Rev. B in December 200
Resurvey of historical collection sites for Balston’s Pygmy Perch in the South West Linkages Target Area
Balston’s Pygmy Perch (Nannatherina balstoni) is one of the rarest native freshwater fishes endemic to south-western Australia (Morgan et al. 2011, 2014). The species inhabits near-coastal lakes, wetlands and flowing streams, and was historically distributed between the Moore River (north of Perth) and the Angove River (east of Albany) (Morgan et al. 2011, 2014). Numerous anthropogenic stressors including habitat destruction, pollution, river regulation, and water abstraction have resulted in an approximate 31% decline in the distribution, with the species apparently having been extirpated from the Swan Coastal Plain and a number of other systems across its range (Morgan et al. 2014). The contemporary distribution extends from the upper reaches of the Margaret River to the Angove River near Two Peoples Bay (Morgan & Beatty 2003; FFGFHU unpubl. data) (see Figure 1). Remnant populations are highly fragmented within this range (Morgan et al. 2014).
In light of its typically low abundance and restricted distribution, N. balstoni has been formally recognised as Vulnerable to extinction under the Commonwealth Government’s Environment Protection and Biodiversity Conservation (EPBC) Act 1999 and is listed under Schedule 1 (“fauna that is rare or is likely to become extinct”) of the Western Australian Government’s Wildlife Conservation Act 1950. Accordingly, this fish is the flagship species of the current project entitled “Protecting threatened fishes in the South West Linkages Target Area”.
A thorough review of the historical distribution of N. balstoni was conducted at the outset of this project and has now been published in the scientific literature (see Morgan et al. 2014). To complement this review, one of the project’s primary aims was to resurvey a number of historical collection sites in order to ground-truth the current status of resident N. balstoni populations. The results of this survey should provide valuable data for authorities in developing management and recovery strategies for the conservation of this threatened south-western Australian endemic
- …
