7,138 research outputs found

    Recent Enhancements to the NASA Langley Structural Acoustics Loads and Transmission (SALT) Facility

    Get PDF
    The Structural Acoustics Loads and Transmission (SALT) facility at the NASA Langley Research Center is comprised of an anechoic room and a reverberant room, and may act as a transmission loss suite when test articles are mounted in a window connecting the two rooms. In the latter configuration, the reverberant room acts as the noise source side and the anechoic room as the receiver side. The noise generation system used for qualification testing in the reverberant room was previously shown to achieve a maximum overall sound pressure level of 141 dB. This is considered to be marginally adequate for generating sound pressure levels typically required for launch vehicle payload qualification testing. Recent enhancements to the noise generation system increased the maximum overall sound pressure level to 154 dB, through the use of two airstream modulators coupled to 35 Hz and 160 Hz horns. This paper documents the acoustic performance of the enhanced noise generation system for a variety of relevant test spectra. Additionally, it demonstrates the capability of the SALT facility to conduct transmission loss and absorption testing in accordance with ASTM and ISO standards, respectively. A few examples of test capabilities are shown and include transmission loss testing of simple unstiffened and built up structures and measurement of the diffuse field absorption coefficient of a fibrous acoustic blanket

    Experimental Evaluation of Tuned Chamber Core Panels for Payload Fairing Noise Control

    Get PDF
    Analytical models have been developed to predict the sound absorption and sound transmission loss of tuned chamber core panels. The panels are constructed of two facesheets sandwiching a corrugated core. When ports are introduced through one facesheet, the long chambers within the core can be used as an array of low-frequency acoustic resonators. To evaluate the accuracy of the analytical models, absorption and sound transmission loss tests were performed on flat panels. Measurements show that the acoustic resonators embedded in the panels improve both the absorption and transmission loss of the sandwich structure at frequencies near the natural frequency of the resonators. Analytical predictions for absorption closely match measured data. However, transmission loss predictions miss important features observed in the measurements. This suggests that higher-fidelity analytical or numerical models will be needed to supplement transmission loss predictions in the future

    Transmission Loss and Absorption of Corrugated Core Sandwich Panels With Embedded Resonators

    Get PDF
    The effect of embedded resonators on the diffuse field sound transmission loss and absorption of composite corrugated core sandwich panels has been evaluated experimentally. Two 1.219 m 2.438 m panels with embedded resonator arrangements targeting frequencies near 100 Hz were evaluated using non-standard processing of ASTM E90-09 acoustic transmission loss and ASTM C423-09a room absorption test measurements. Each panel is comprised of two composite face sheets sandwiching a corrugated core with a trapezoidal cross section. When inlet openings are introduced in one face sheet, the chambers within the core can be used as embedded acoustic resonators. Changes to the inlet and chamber partition locations allow this type of structure to be tuned for targeted spectrum passive noise control. Because the core chambers are aligned with the plane of the panel, the resonators can be tuned for low frequencies without compromising the sandwich panel construction, which is typically sized to meet static load requirements. Absorption and transmission loss performance improvements attributed to opening the inlets were apparent for some configurations and inconclusive for others

    Sound Transmission Loss Through a Corrugated-Core Sandwich Panel with Integrated Acoustic Resonators

    Get PDF
    The goal of this study is to better understand the effect of structurally integrated resonators on the transmission loss of a sandwich panel. The sandwich panel has facesheets over a corrugated core, which creates long aligned chambers that run parallel to the facesheets. When ports are introduced through the facesheet, the long chambers within the core can be used as low-frequency acoustic resonators. By integrating the resonators within the structure they contribute to the static load bearing capability of the panel while also attenuating noise. An analytical model of a panel with embedded resonators is derived and compared with numerical simulations. Predictions show that acoustic resonators can significantly improve the transmission loss of the sandwich panel around the natural frequency of the resonators. In one configuration with 0.813 m long internal chambers, the diffuse field transmission loss is improved by more than 22 dB around 104 Hz. The benefit is achieved with no added mass or volume relative to the baseline structure. The embedded resonators are effective because they radiate sound out-of-phase with the structure. This results in destructive interference, which leads to less transmitted sound power

    Green's function for gravitational waves in FRW spacetimes

    Full text link
    A method for calculating the retarded Green's function for the gravitational wave equation in Friedmann-Roberson-Walker spacetimes, within the formalism of linearized Einstein gravity is developed. Hadamard's general solution to Cauchy's problem for second-order, linear partial differential equations is applied to the FRW gravitational wave equation. The retarded Green's function may be calculated for any FRW spacetime, with curved or flat spatial sections, for which the functional form of the Ricci scalar curvature RR is known. The retarded Green's function for gravitational waves propagating through a cosmological fluid composed of both radiation and dust is calculated analytically for the first time. It is also shown that for all FRW spacetimes in which the Ricci scalar curvatures does not vanish, R0R \neq 0, the Green's function violates Huygens' principle; the Green's function has support inside the light-cone due to the scatter of gravitational waves off the background curvature.Comment: 9 pages, FERMILAB-Pub-93/189-

    Opipramol dipicrate

    Full text link

    2-(4-Chloro­phen­yl)-6-meth­oxy­chroman-4-one

    Get PDF
    In the title mol­ecule, C16H13Cl O3, the two aromatic rings form a dihedral angle of 65.3 (1)°. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers, which are further packed into columns propagating in [100] by weak C—H⋯π inter­actions

    Neutrino-nucleus reactions on ^{12}C and ^{16}O

    Get PDF
    Exclusive and inclusive (νμ,μ),(νe,e)(\nu_\mu, \mu^-), (\nu_e, e^-) cross-sections and μ\mu^--capture rates are calculated for ^{12}C and ^{16}O using the consistent random phase approximation (RPA) and pairing model. After a pairing correction is introduced to the RPA results the flux-averaged theoretical (νμ,μ),(νe,e)(\nu_\mu, \mu^-), (\nu_e, e^-) cross-sections and μ\mu^--capture rates in 12^{12}C are in good agreement with experiment. In particular when one takes into account the experimental error bars, the recently measured range of values for the (νμ,μ)(\nu_\mu, \mu^-) cross-section is in agreement with the present theoretical results. Predictions of (νμ,μ)(\nu_\mu, \mu^-) and (νe,e)(\nu_e, e^-) cross-sections in ^{16}O are also presented.Comment: 13 pages, Revte
    corecore