34 research outputs found

    Modelling and simulating change in reforesting mountain landscapes using a social-ecological framework

    Get PDF
    Natural reforestation of European mountain landscapes raises major environmental and societal issues. With local stakeholders in the Pyrenees National Park area (France), we studied agricultural landscape colonisation by ash (Fraxinus excelsior) to enlighten its impacts on biodiversity and other landscape functions of importance for the valley socio-economics. The study comprised an integrated assessment of land-use and land-cover change (LUCC) since the 1950s, and a scenario analysis of alternative future policy. We combined knowledge and methods from landscape ecology, land change and agricultural sciences, and a set of coordinated field studies to capture interactions and feedback in the local landscape/land-use system. Our results elicited the hierarchically-nested relationships between social and ecological processes. Agricultural change played a preeminent role in the spatial and temporal patterns of LUCC. Landscape colonisation by ash at the parcel level of organisation was merely controlled by grassland management, and in fact depended on the farmer's land management at the whole-farm level. LUCC patterns at the landscape level depended to a great extent on interactions between farm household behaviours and the spatial arrangement of landholdings within the landscape mosaic. Our results stressed the need to represent the local SES function at a fine scale to adequately capture scenarios of change in landscape functions. These findings orientated our modelling choices in the building an agent-based model for LUCC simulation (SMASH - Spatialized Multi-Agent System of landscape colonization by ASH). We discuss our method and results with reference to topical issues in interdisciplinary research into the sustainability of multifunctional landscapes

    Short-Lived Trace Gases in the Surface Ocean and the Atmosphere

    Get PDF
    The two-way exchange of trace gases between the ocean and the atmosphere is important for both the chemistry and physics of the atmosphere and the biogeochemistry of the oceans, including the global cycling of elements. Here we review these exchanges and their importance for a range of gases whose lifetimes are generally short compared to the main greenhouse gases and which are, in most cases, more reactive than them. Gases considered include sulphur and related compounds, organohalogens, non-methane hydrocarbons, ozone, ammonia and related compounds, hydrogen and carbon monoxide. Finally, we stress the interactivity of the system, the importance of process understanding for modeling, the need for more extensive field measurements and their better seasonal coverage, the importance of inter-calibration exercises and finally the need to show the importance of air-sea exchanges for global cycling and how the field fits into the broader context of Earth System Science

    Is a collagen scaffold for a tissue engineered nucleus replacement capable of restoring disc height and stability in an animal model?

    No full text
    The idea of a tissue engineered nucleus implant is to seed cells in a three-dimensional collagen matrix. This matrix may serve as a scaffold for a tissue engineered nucleus implant. The aim of this study was to investigate whether implantation of the collagen matrix into a spinal segment after nucleotomy is able to restore disc height and flexibility. The implant basically consists of condensed collagen type-I matrix. For clinical use, this matrix will be used for reinforcing and supporting the culturing of nucleus cells. In experiments, matrixes were concentrated with barium sulfate for X-ray purposes and cell seeding was disclaimed in order to evaluate the biomechanical performance of the collagen material. Six bovine lumbar functional spinal units, aging between 5 and 6 months, were used for the biomechanical in-vitro test. In each specimen, an oblique incision was performed, the nucleus was removed and replaced by a collagen-type-I matrix. Specimens were mounted in a custom-built spine tester, and subsequently exposed to pure moments of 7.5 Nm to move within the three anatomical planes. Each tested stage (intact, nucleotomy and implanted) was evaluated for range of motion, neutral zone and change in disc height. Removal of the nucleus significantly reduced disc height by 0.84 mm in respect to the intact stage and caused an instability in the segment. Through the implantation of the tissue engineered nucleus it was possible to restore this height and stability loss, and even to increase slightly the disc height of 0.07 mm compared with the intact stage. There was no statistical difference between the stability provided by the implant and intact stage. Results of movements in lateral bending and axial rotation showed the same trend compared to flexion/extension. However, implant extrusions have been observed in three of six cases during the flexibility assessment. The results of this study directly reflect the efficacy of vital nucleus replacement to restore disc height and to provide stability to intervertebral discs. However, from a biomechanical point of view, the challenge is to employ an appropriate annulus fibrosus sealing method, which is capable to keep the nucleus implant in place over a long-time period. Securing the nucleus implant inside the disc is one of the most important biomechanical prerequisites if such a tissue engineered implant shall have a chance for clinical application
    corecore