1,484 research outputs found

    Volumetric budget and grain-size fractionation of a geological sediment routing system: Eocene Escanilla Formation, south-central Pyrenees

    Get PDF
    The supply of sediment and its characteristic grain-size mix are key controls on depositional facies and stratigraphic architectures in sedimentary basins. Consequently, constraints on sediment caliber, budgets, and fluxes are a prerequisite for effective stratigraphic prediction. Here, we investigate a mid- to late Eocene (41.6–33.9 Ma) sediment routing system in the Spanish Pyrenees. We derive a full volumetric sediment budget, weighted for grain-size fractions, partitioned between terrestrial and marine depositional sectors, and we quantify sediment fluxes between depocenters. The paleo–sediment routing system was controlled by syndepositional thrust tectonics and consisted of two major feeder systems eroding the high Pyrenees that supplied a river system draining parallel to the regional tectonic strike and that ultimately exported sediment to coastal, shallow- marine and deep-marine depo centers. We show significant changes in both the volume and grain-size distribution of sediment eroded from the Pyrenean mountain belt during three different time intervals in the mid- to late Eocene, which controlled the characteristics of stratigraphy preserved in a series of wedge-top basins The time-averaged sediment discharge from source areas increased from ~250 km3/m.y. to 700 km3/m.y. over the 7.7 m.y. interval investigated. This temporal increase in sediment supply caused major westward progradation of facies belts and led to substantial sediment bypass through the terrestrial routing system to the (initially) marine Jaca Basin. The grain-size mix, measured as size fractions of gravel, sand, and fi ner than sand, also changed over the three time intervals intervals. Integration of volumetric and grain-size information from source to sink provides an estimate of the long-term grain-size distribution of the sediment supply, comprising 9% gravel, 24% sand, and 67% finer than sand. The techniques and concepts used in the Escanilla study can profitably be applied to paleo–sediment routing systems in other tectonic and climatic settings and to catchments with a range of bedrock lithology and vegetation. This will promote a better generic understanding of the dynamics of source-to sink systems and provide a powerful tool for forward stratigraphic modeling. The sediment routing system approach has the potential to contribute strongly to new models of sequence stratigraphy

    Transient landscapes at fault tips

    Get PDF
    Fault growth produces patterns of displacement and slip rate that are highly variable in both space and time. This transience is most pronounced near fault tips, where along‐strike displacement gradients vary in time as the fault array lengthens. We use a set of statistical and field observations to quantify the response of catchments and their associated fans in three large normal fault arrays to transient patterns of displacement and slip rate. Catchments near the fault tips show distinct scaling of channel slope with drainage area compared with catchments near the strike center. This scaling becomes uniform beyond about ∌10 km from the fault tips and is therefore like footwall relief, largely decoupled from the fault displacement profile. The estimated catchment response times to a change in slip rate also vary between fault tips and strike center. The response times for tip catchments are much longer than the inferred time since fault activity began, indicating that they are unlikely to be in equilibrium with the current fault displacement field. This disequilibrium, combined with the decoupling of slope‐area scaling from displacement, indicates that landscapes are most sensitive to fault activity near fault tips. Active faults characterized by along‐strike variation in slip rate thus provide excellent opportunities to explore the transient response of landscapes to tectonic forcing

    Nonmonotonic dependence of the absolute entropy on temperature in supercooled Stillinger-Weber silicon

    Full text link
    Using a recently developed thermodynamic integration method, we compute the precise values of the excess Gibbs free energy (G^e) of the high density liquid (HDL) phase with respect to the crystalline phase at different temperatures (T) in the supercooled region of the Stillinger-Weber (SW) silicon [F. H. Stillinger and T. A. Weber, Phys. Rev. B. 32, 5262 (1985)]. Based on the slope of G^e with respect to T, we find that the absolute entropy of the HDL phase increases as its enthalpy changes from the equilibrium value at T \ge 1065 K to the value corresponding to a non-equilibrium state at 1060 K. We find that the volume distribution in the equilibrium HDL phases become progressively broader as the temperature is reduced to 1060 K, exhibiting van-der-Waals (VDW) loop in the pressure-volume curves. Our results provides insight into the thermodynamic cause of the transition from the HDL phase to the low density phases in SW silicon, observed in earlier studies near 1060 K at zero pressure.Comment: This version is accepted for publication in Journal of Statistical Physics (11 figures, 1 table

    Landscape evolution at extensional relay zones

    Get PDF
    It is commonly argued that the extensional relay zones between adjacent crustal-scale normal fault segments are associated with large catchment-fan systems that deliver significant amounts of sediment to hanging wall basins. This conceptual model of extensional basin development, while useful, overlooks some of the physical constraints on catchment evolution and sediment supply in relay zones. We argue that a key factor in the geomorphic evolution of relay zones is the interplay between two different timescales, the time over which the fault array develops, and the time over which the footwall catchment-fan systems are established. Results of numerical experiments using a landscape evolution model suggest that, in isolated fault blocks, footwall catchment evolution is highly dependent on the pattern and rate of fault array growth. A rapidly linked en echelon fault geometry gives rise to capture of relay zone drainage by aggressive catchment incision in the relay zone and to consequent increases in the rate of sediment supply to the hanging wall. Capture events do not occur when the fault segments are allowed to propagate slowly toward an en echelon geometry. In neither case, however, are large relay zone catchment-fan systems developed. We propose several physical reasons for this, including geometric constraints and limits on catchment incision and sediment transport rates in relay zones. Future research efforts should focus on the timescales over which fault array development occurs, and on the quantitative variations in catchment-fan system morphology at relay zones

    Effect of adding fat to feedlot rations

    Get PDF
    Fat is added to commercial feedlot rations as a concentrated energy source and to reduce dustiness and wear of feed processing machinery. We added fat at varying levels ( 0 to 6% of the ration) to study effects from fat and the influence of a surface-active additive. Two hundred 700-pound steers were allotted to 40 pens of 5 each all fed 135 days on the rations show in Table 12, according to the schedule shown in Table 13

    Timing and patterns of debris flow deposition on Shepherd and Symmes Creek fans, Owens Valley, California, deduced from cosmogenic 10Be

    Get PDF
    Debris-flow fans on the western side of Owens Valley, California, show differences in their depths of fan head incision, and thus preserve significantly different surface records of sedimentation over glacial-interglacial cycles. We mapped fan lobes on two fans (Symmes and Shepherd Creek) based on the geometry of the deposits using field observations and high-resolution Airborne Laser Swath Mapping (ALSM) data, and established an absolute fan lobe chronology by using cosmogenic radionuclide exposure dating of large debris-flow boulders. While both fans and their associated catchments were subject to similar tectonic and base level conditions, the Shepherd Creek catchment was significantly glaciated while that of Symmes Creek experienced only minor glaciation. Differences in the depth of fan head incision have led to cosmogenic surface age chronologies that differ in the length of the preserved depositional records. Symmes Creek fan preserves evidence of exclusively Holocene deposition with cosmogenic 10Be ages ranging from 8 to 3 ka. In contrast, the Shepherd Creek fan surface was formed by late Pleistocene and Holocene debris-flow activity, with major deposition between 86-74, 33-15, and 11-3 ka. These age constraints on the depositional timing in Owens Valley show that debris-flow deposition in Owens Valley occurred during both glacial and interglacial periods, but may have been enhanced during marine isotope stages 4 and 2. The striking differences in the surface record of debris-flow deposition on adjacent fans have implications for the use of fan surfaces as paleoenvironmental recorders, and for the preservation of debris-flow deposits in the stratigraphic record

    External and intrinsic anchoring in nematic liquid crystals: A Monte Carlo study

    Get PDF
    We present a Monte Carlo study of external surface anchoring in nematic cells with partially disordered solid substrates, as well as of intrinsic anchoring at free nematic interfaces. The simulations are based on the simple hexagonal lattice model with a spatially anisotropic intermolecular potential. We estimate the corresponding extrapolation length bb by imposing an elastic deformation in a hybrid cell-like nematic sample. Our estimates for bb increase with increasing surface disorder and are essentially temperature--independent. Experimental values of bb are approached only when both the coupling of nematic molecules with the substrate and the anisotropy of nematic--nematic interactions are weak.Comment: Revisions primarily in section I

    Clusters of Galaxies: New Results from the CLEF Hydrodynamics Simulation

    Full text link
    Preliminary results are presented from the CLEF hydrodynamics simulation, a large (N=2(428)^3 particles within a 200 Mpc/h comoving box) simulation of the LCDM cosmology that includes both radiative cooling and a simple model for galactic feedback. Specifically, we focus on the X-ray properties of the simulated clusters at z=0 and demonstrate a reasonable level of agreement between simulated and observed cluster scaling relations.Comment: 7 pages, 4 figures, accepted for publication in Advances in Space Research (proceedings of the COSPAR 2004 Assembly, Paris

    Resistivity of a Metal between the Boltzmann Transport Regime and the Anderson Transition

    Full text link
    We study the transport properties of a finite three dimensional disordered conductor, for both weak and strong scattering on impurities, employing the real-space Green function technique and related Landauer-type formula. The dirty metal is described by a nearest neighbor tight-binding Hamiltonian with a single s-orbital per site and random on-site potential (Anderson model). We compute exactly the zero-temperature conductance of a finite size sample placed between two semi-infinite disorder-free leads. The resistivity is found from the coefficient of linear scaling of the disorder averaged resistance with sample length. This ``quantum'' resistivity is compared to the semiclassical Boltzmann expression computed in both Born approximation and multiple scattering approximation.Comment: 5 pages, 3 embedded EPS figure

    Structure, Transport and Magnetic properties in La2x_{2x}Sr2−2x_{2-2x}Co2x_{2x}Ru2−2x_{2-2x}O6_{6}

    Full text link
    The perovskite solid solutions of the type La2x_{2x}Sr2−2x_{2-2x}Co2x_{2x}Ru2−2x_{2-2x}O6_{6} with 0.25 ≀\leq x ≀ \leq 0.75 have been investigated for their structural, magnetic and transport properties. All the compounds crystallize in double perovskite structure. The magnetization measurements indicate a complex magnetic ground state with strong competition between ferromagnetic and antiferromagnetic interactions. Resistivity of the compounds is in confirmation with hopping conduction behaviour though differences are noted especially for xx = 0.4 and 0.6. Most importantly, low field (50Oe) magnetization measurements display negative magnetization during the zero field cooled cycle. X-ray photoelectron spectroscopy measurements indicate presence of Co2+^{2+}/Co3+^{3+} and Ru4+^{4+}/Ru5+^{5+} redox couples in all compositions except xx = 0.5. Presence of magnetic ions like Ru4+^{4+} and Co3+^{3+} gives rise to additional ferromagnetic (Ru-rich) and antiferromagnetic sublattices and also explains the observed negative magnetization.Comment: Accepted for publication in J. Magn. Magn. Mate
    • 

    corecore