1,569 research outputs found

    Hypomyelination alters K+ channel expression in mouse mutants shiverer and Trembler

    Get PDF
    AbstractVoltage-gated K+ channels are localized to juxtaparanodal regions of myelinated axons. To begin to understand the role of normal compact myelin in this localization, we examined mKv1.1 and mKv1.2 expression in the dysmyelinating mouse mutants shiverer and Trembler. In neonatal wild-type and shiverer mice, the focal localization of both proteins in axon fiber tracts is similar, suggesting that cues other than mature myelin can direct initial K+ channel localization in shiverer mutants. In contrast, K+ channel localization is altered in hypomyelinated axonal fiber tracts of adult mutants, suggesting that abnormal myelination leads to channel redistribution. In shiverer adult, K+ channel expression is up-regulated in both axons and glia, as revealed by immunocytochemistry, RNase protection, and in situ hybridization studies. This up-regulation of K+ channels in hypomyelinated axon tracts may reflect a compensatory reorganization of ionic currents, allowing impulse conduction to occur in these dysmyelinating mouse mutants

    A System for Harvesting Eggs from the Pink-Spotted Lady Beetle

    Get PDF
    We describe a system for harvesting eggs from a predatory insect, the pink-spotted lady beetle, Coleomegilla maculata De Geer (Coleoptera: Coccinellidae). Adult beetles placed in square, transparent containers that included oviposition substrates hanging from the top of the cage deposited eggs on the materials provided. We harvested eggs from these substrates in quantities sufficient for either destructive sampling or synchronous development of larvae. We evaluated effects of crowding inside cages; effects of a chemical attractant on oviposition behavior; egg cannibalism. Females preferred a textured surface rather than a smooth, waxy one for laying eggs. Crowding inhibited oviposition of beetles. Presence of a chemical attractant (methyl salicylate) did not significantly improve oviposition. This paper describes an inexpensive system for harvesting eggs from C. maculata. Refinement of this system should improve oviposition and reduce cannibalism

    A System for Harvesting Eggs from the Pink-Spotted Lady Beetle

    Get PDF
    We describe a system for harvesting eggs from a predatory insect, the pink-spotted lady beetle, Coleomegilla maculata De Geer (Coleoptera: Coccinellidae). Adult beetles placed in square, transparent containers that included oviposition substrates hanging from the top of the cage deposited eggs on the materials provided. We harvested eggs from these substrates in quantities sufficient for either destructive sampling or synchronous development of larvae. We evaluated effects of crowding inside cages; effects of a chemical attractant on oviposition behavior; egg cannibalism. Females preferred a textured surface rather than a smooth, waxy one for laying eggs. Crowding inhibited oviposition of beetles. Presence of a chemical attractant (methyl salicylate) did not significantly improve oviposition. This paper describes an inexpensive system for harvesting eggs from C. maculata. Refinement of this system should improve oviposition and reduce cannibalism

    Molecular Cloning and Expression of Three Polygalacturonase cDNAs from the Tarnished Plant Bug, Lygus lineolaris

    Get PDF
    Three unique cDNAs encoding putative polygalacturonase enzymes were isolated from the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae). The three nucleotide sequences were dissimilar to one another, but the deduced amino acid sequences were similar to each other and to other polygalacturonases from insects, fungi, plants, and bacteria. Four conserved segments characteristic of polygalacturonases were present, but with some notable semiconservative substitutions. Two of four expected disulfide bridge—forming cysteine pairs were present. All three inferred protein translations included predicted signal sequences of 17 to 20 amino acids. Amplification of genomic DNA identified an intron in one of the genes, Llpg1, in the 5′ untranslated region. Semiquantitative RT-PCR revealed expression in all stages of the insect except the eggs. Expression in adults, male and female, was highly variable, indicating a family of highly inducible and diverse enzymes adapted to the generalist polyphagous nature of this important pest

    Program adaptation by health departments

    Get PDF
    INTRODUCTION: The dissemination of evidence-based interventions (i.e., programs, practices, and policies) is a core function of US state health departments (SHDs). However, interventions are originally designed and tested with a specific population and context. Hence, adapting the intervention to meet the real-world circumstances and population\u27s needs can increase the likelihood of achieving the expected health outcomes for the target population from the implemented intervention. This study identified how SHD employees decide to adapt public health programs and what influences decisions on how to adapt them. MATERIALS AND METHODS: SHD employees ( RESULTS: Data, outcomes, and health department evaluations influenced decisions to adapt a program (pre-adaptation), and reasons to adapt a program included organizational and sociopolitical contextual factors. SHD middle-level managers, program managers and staff, and local agencies were involved in the decisions to adapt the programs. Finally, the goals for adapting a program included enhancing effectiveness/outcomes, reach and satisfaction with the program; funding; and partner engagement. After SHD employees decided to adapt a program, data and evidence guided the changes. Program staff and evaluators were engaged in the adaptation process. Program managers consulted partners to gather ideas on how best to adapt a program based on partners\u27 experiences implementing the program and obtaining community input. Lastly, program managers also received input on adapting content and context from coalition meetings and periodic technical assistance calls. DISCUSSION: The findings related to decisions to adapt public health programs provide practitioners with considerations for adapting them. Findings reaffirm the importance of promoting public health competencies in program evaluation and adaptation, as well as systematically documenting and evaluating the adaptation processes. In addition, the themes could be studied in future research as mechanisms, mediators, and moderators to implementation outcomes

    Molecular markers for species identification of Hessian fly males caught on sticky pheromone traps

    Get PDF
    Citation: Chen, M., . . . & Skinner, M. (2014). Molecular Markers for Species Identification of Hessian Fly Males Caught on Sticky Pheromone Traps. Journal of Economic Entomology, 107(3), 1110-1117. https://doi.org/https://doi.org/10.1603/EC13384Pheromone traps have been widely used to monitor insect population activity. However, sticky pheromone traps for the Hessian fly (Mayetiola destructor), one of the most destructive pests of wheat, have been used only in recent years. Hessian fly male adults are small and fragile, and preserving specimens during sorting of sticky pheromone traps is a challenge when intact specimens are often required to visually distinguish them from related insects such as fungus gnats. In this study, we have established a quick and reliable method based on polymerase chain reaction markers to correctly distinguish Hessian fly males from other closely related insects. Two Hessian fly-specific markers were established, one based on the trypsin gene MDP-10 and the other based on a gene encoding the salivary gland protein SSGP31‐5. Both markers provided >98% identification success of 110 Hessian fly samples prepared from single insects. The method should provide a useful tool to allow for identification of Hessian fly individuals on sticky pheromone traps or in other situations when Hessian fly eggs, larvae, pupae, and adults are difficult to distinguish from other insects

    Mutations in AKAP5 Disrupt Dendritic Signaling Complexes and Lead to Electrophysiological and Behavioral Phenotypes in Mice

    Get PDF
    AKAP5 (also referred to as AKAP150 in rodents and AKAP79 in humans) is a scaffolding protein that is highly expressed in neurons and targets a variety of signaling molecules to dendritic membranes. AKAP5 interacts with PKA holoenzymes containing RIIα or RIIβ as well as calcineurin (PP2B), PKC, calmodulin, adenylyl cyclase type V/VI, L-type calcium channels, and β-adrenergic receptors. AKAP5 has also been shown to interact with members of the MAGUK family of PSD-scaffolding proteins including PSD95 and SAP97 and target signaling molecules to receptors and ion channels in the postsynaptic density (PSD). We created two lines of AKAP5 mutant mice: a knockout of AKAP5 (KO) and a mutant that lacks the PKA binding domain of AKAP5 (D36). We find that PKA is delocalized in both the hippocampus and striatum of KO and D36 mice indicating that other neural AKAPs cannot compensate for the loss of PKA binding to AKAP5. In AKAP5 mutant mice, a significant fraction of PKA becomes localized to dendritic shafts and this correlates with increased binding to microtubule associated protein-2 (MAP2). Electrophysiological and behavioral analysis demonstrated more severe deficits in both synaptic plasticity and operant learning in the D36 mice compared with the complete KO animals. Our results indicate that the targeting of calcineurin or other binding partners of AKAP5 in the absence of the balancing kinase, PKA, leads to a disruption of synaptic plasticity and results in learning and memory defects

    Photon wave mechanics and position eigenvectors

    Full text link
    One and two photon wave functions are derived by projecting the quantum state vector onto simultaneous eigenvectors of the number operator and a recently constructed photon position operator [Phys. Rev A 59, 954 (1999)] that couples spin and orbital angular momentum. While only the Landau-Peierls wave function defines a positive definite photon density, a similarity transformation to a biorthogonal field-potential pair of positive frequency solutions of Maxwell's equations preserves eigenvalues and expectation values. We show that this real space description of photons is compatible with all of the usual rules of quantum mechanics and provides a framework for understanding the relationships amongst different forms of the photon wave function in the literature. It also gives a quantum picture of the optical angular momentum of beams that applies to both one photon and coherent states. According to the rules of qunatum mechanics, this wave function gives the probability to count a photon at any position in space.Comment: 14 pages, to be published in Phys. Rev.
    corecore