53,176 research outputs found
Spin swap vs. double occupancy in quantum gates
We propose an approach to realize quantum gates with electron spins localized
in a semiconductor that uses double occupancy to advantage. With a fast
(non-adiabatic) time control of the tunnelling, the probability of double
occupancy is first increased and then brought back exactly to zero. The quantum
phase built in this process can be exploited to realize fast quantum
operations. We illustrate the idea focusing on the half-swap operation, which
is the key two-qubit operation needed to build a CNOT gate.Comment: 5 pages, 2 figure
Station-Keeping Requirements for Constellations of Free-Flying Collectors Used for Astronomical Imaging in Space
The accuracy requirements on station-keeping for constellations of
free-flying collectors coupled as (future) imaging arrays in space for
astrophysics applications are examined. The basic imaging element of these
arrays is the two-element interferometer. Accurate knowledge of two quantities
is required: the \textit{projected baseline length}, which is the distance
between the two interferometer elements projected on the plane tranverse to the
line of sight to the target; and the \textit{optical path difference}, which is
the difference in the distances from that transverse plane to the beam
combiner. ``Rules-of-thumb'' are determined for the typical accuracy required
on these parameters. The requirement on the projected baseline length is a
\textit{knowledge} requirement and depends on the angular size of the targets
of interest; it is generally at a level of half a meter for typical stellar
targets, decreasing to perhaps a few centimeters only for the widest attainable
fields of view. The requirement on the optical path difference is a
\textit{control} requirement and is much tighter, depending on the bandwidth of
the signal; it is at a level of half a wavelength for narrow (few %) signal
bands, decreasing to for the broadest bandwidths expected
to be useful. Translation of these requirements into engineering requirements
on station-keeping accuracy depends on the specific details of the collector
constellation geometry. Several examples are provided to guide future
application of the criteria presented here. Some implications for the design of
such collector constellations and for the methods used to transform the
information acquired into images are discussed.Comment: 13 pages, 6 figures, accepted 6/29/07 for the August 2007 issue of
PAS
Investigation of potential of differential absorption Lidar techniques for remote sensing of atmospheric pollutants
The NASA multipurpose differential absorption lidar (DIAL) system uses two high conversion efficiency dye lasers which are optically pumped by two frequency-doubled Nd:YAG lasers mounted rigidly on a supporting structure that also contains the transmitter, receiver, and data system. The DIAL system hardware design and data acquisition system are described. Timing diagrams, logic diagrams, and schematics, and the theory of operation of the control electronics are presented. Success in obtaining remote measurements of ozone profiles with an airborne systems is reported and results are analyzed
Non-relativistic Extended Gravity and its applications across different astrophysical scales
Using dimensional analysis techniques we present an extension of Newton's
gravitational theory built under the assumption that Milgrom's acceleration
constant is a fundamental quantity of nature. The gravitational force converges
to Newton's gravity and to a MOND-like description in two different mass and
length regimes. It is shown that a modification on the force sector (and not in
the dynamical one as MOND does) is more convenient and can reproduce and
predict different phenomena usually ascribed to dark matter at the
non-relativistic level.Comment: 4 pages, 2 figures. To appear in the proceedings of the 2011 Spanish
Relativity Meeting (ERE2011) held in Madrid, Spai
The Transition between Nonorthogonal Polarization Modes in PSR B2016+28 at 1404 MHz
Polarization observations of the radio emission from PSR B2016+28 at 1404 MHz
reveal properties that are consistent with two, very different, interpretations
of the pulsar's viewing geometry. The pulsar's average polarization properties
show a rapid change in position angle (PA) near the pulse center, suggesting
that the observer's sightline nearly intersects the star's magnetic pole. But
single pulse, polarization observations of the pulsar show nearly orthogonal
modes of polarization following relatively flat and parallel PA trajectories
across the pulse, suggesting that the sightline is far from the pole.
Additionally, PA histograms reveal a "modal connecting bridge", of unknown
origin, joining the modal PA trajectories over much of the pulse and following
the rapid PA change shown in the average data. The nonorthogonality of
polarization modes is incorporated in a statistical model of radio polarization
to account for the deviations from mode orthogonality that are observed in the
pulsar. The model is used to interpret the rapid PA change and modal connecting
bridge as a longitudinally-resolved transition between modes of nonorthogonal
polarization. Thus, the modal PA trajectories are argued to reflect the
pulsar's true viewing geometry. This interpretation is consistent with the
pulsar's morphological classification, preserves the Radhakrishnan & Cooke
model of pulsar radio emission, and avoids the complication that the modal
connecting bridge might be produced by some other emission mechanism. The
statistical model's ability to simulate the rich variety of polarization
properties observed in the emission lends additional support to the model's
applicability and its underlying assumption that the polarization modes occur
simultaneously.Comment: Accepted for publication in Ap
Classification and analysis of emission-line galaxies using mean field independent component analysis
We present an analysis of the optical spectra of narrow emission-line
galaxies, based on mean field independent component analysis (MFICA). Samples
of galaxies were drawn from the Sloan Digital Sky Survey (SDSS) and used to
generate compact sets of `continuum' and `emission-line' component spectra.
These components can be linearly combined to reconstruct the observed spectra
of a wider sample of galaxies. Only 10 components - five continuum and five
emission line - are required to produce accurate reconstructions of essentially
all narrow emission-line galaxies; the median absolute deviations of the
reconstructed emission-line fluxes, given the signal-to-noise ratio (S/N) of
the observed spectra, are 1.2-1.8 sigma for the strong lines. After applying
the MFICA components to a large sample of SDSS galaxies we identify the regions
of parameter space that correspond to pure star formation and pure active
galactic nucleus (AGN) emission-line spectra, and produce high S/N
reconstructions of these spectra.
The physical properties of the pure star formation and pure AGN spectra are
investigated by means of a series of photoionization models, exploiting the
faint emission lines that can be measured in the reconstructions. We are able
to recreate the emission line strengths of the most extreme AGN case by
assuming the central engine illuminates a large number of individual clouds
with radial distance and density distributions, f(r) ~ r^gamma and g(n) ~
n^beta, respectively. The best fit is obtained with gamma = -0.75 and beta =
-1.4. From the reconstructed star formation spectra we are able to estimate the
starburst ages. These preliminary investigations serve to demonstrate the
success of the MFICA-based technique in identifying distinct emission sources,
and its potential as a tool for the detailed analysis of the physical
properties of galaxies in large-scale surveys.Comment: MNRAS accepted. 29 pages, 24 figures, 3 table
Interpreting the Ionization Sequence in AGN Emission-Line Spectra
We investigate the physical cause of the great range in the ionization level
seen in the spectra of narrow lined active galactic nuclei (AGN). Mean field
independent component analysis identifies examples of individual SDSS galaxies
whose spectra are not dominated by emission due to star formation (SF), which
we designate as AGN. We assembled high S/N ratio composite spectra of a
sequence of these AGN defined by the ionization level of their narrow-line
regions (NLR), extending down to very low-ionization cases. We used a local
optimally emitting cloud (LOC) model to fit emission-line ratios in this AGN
sequence. These included the weak lines that can be measured only in the
co-added spectra, providing consistency checks on strong line diagnostics.
After integrating over a wide range of radii and densities our models indicate
that the radial extent of the NLR is the major parameter in determining the
position of high to moderate ionization AGN along our sequence, providing a
physical interpretation for their systematic variation. Higher ionization AGN
contain optimally emitting clouds that are more concentrated towards the
central continuum source than in lower ionization AGN. Our LOC models indicate
that for the objects that lie on our AGN sequence, the ionizing luminosity is
anticorrelated with the NLR ionization level, and hence anticorrelated with the
radial concentration and physical extent of the NLR. A possible interpretation
that deserves further exploration is that the ionization sequence might be an
age sequence where low ionization objects are older and have systematically
cleared out their central regions by radiation pressure. We consider that our
AGN sequence instead represents a mixing curve of SF and AGN spectra, but argue
that while many galaxies do have this type of composite spectra, our AGN
sequence appears to be a special set of objects with negligible SF excitation.Comment: 57 pages; 18 figures, accepted by MNRA
The Bacterial Photosynthetic Reaction Center as a Model for Membrane Proteins
Membrane proteins participate in many fundamental cellular processes. Until recently, an understanding of the function and properties of membrane proteins was hampered by an absence of structural information at the atomic level. A landmark achievement toward understanding the structure of membrane proteins was the crystallization (1) and structure determination (2-5) the photosynthetic reaction center (RC) from the purple bacteria Rhodopseudomonas viridis, followed by that of the RC from Rhodobacter sphaeroides (6-17). The RC is an integral membrane protein-pigment complex, which carries out the initial steps of photosynthesis (reviewed in 18). RCs from the purple bacteria Rps. viridis and Rb. sphaeroides are composed of three membrane-associated protein subunits (designated L, M, and H), and the following cofactors: four bacteriochlorophylls (Bchl or B), two bacteriopheophytins (Bphe or [phi]), two quinones, and a nonheme iron. The cofactors are organized into two symmetrical branches that are approximately related by a twofold rotation axis (2, 8). A central feature of the structural organization of the RC is the presence of 11 hydrophobic [alpha]-helixes, approximately 20-30 residues long, which are believed to represent the membrane-spanning portion of the RC (3, 9). Five membrane-spanning helixes are present in both the L and M subunits, while a single helix is in the H subunit. The folding of the L and M subunits is similar, consistent with significant sequence similarity between the two chains (19-25). The L and M subunits are approximately related by the same twofold rotation axis that relates the two cofactor branches.
RCs are the first membrane proteins to be described at atomic resolution; consequently they provide an important model for discussing the folding of membrane proteins. The structure demonstrates that [alpha]-helical structures may be adopted by integral membrane proteins, and provides confirmation of the utility of hydropathy plots in identifying nonpolar membrane-spanning regions from sequence data. An important distinction between the folding environments of water-soluble proteins and membrane proteins is the large difference in water concentration surrounding the proteins. As a result, hydrophobic interactions (26) play very different roles in stabilizing the tertiary structures of these two classes of proteins; this has important structural consequences. There is a striking difference in surface polarity of membrane and water-soluble proteins. However, the characteristic atomic packing and surface area appear quite similar.
A computational method is described for defining the position of the RC in the membrane (10). After localization of the RC structure in the membrane, surface residues in contact with the lipid bilayer were identified. As has been found for soluble globular proteins, surface residues are less well conserved in homologous membrane proteins than the buried, interior residues. Methods based on the variability of residues between homologous proteins are described (13); they are useful (a) in defining surface helical regions of membrane and water-soluble proteins and (b) in assigning the side of these helixes that are exposed to the solvent. A unifying view of protein structure suggests that water-soluble proteins may be considered as modified membrane proteins with covalently attached polar groups that solubilize the proteins in aqueous solution
Conformal Field Theory Correlators from Classical Field Theory on Anti-de Sitter Space II. Vector and Spinor Fields
We use the AdS/CFT correspondence to calculate CFT correlation functions of
vector and spinor fields. The connection between the AdS and boundary fields is
properly treated via a Dirichlet boundary value problem.Comment: 14 pages, LaTeX2e with amsmath,amsfonts packages; v2:interactions
section corrected, reference adde
- …