71,422 research outputs found

    Traffic control system and method

    Get PDF
    Frequency of carrier received by aircraft is measured and compared with reference to indicate magnitude of Doppler shift. One Doppler frequency range is selected and indicated by digital signal. Difference between frequency is offset of apparent carrier frequency transmitted by aircraft

    Traffic control system and method Patent

    Get PDF
    Traffic control system for supersonic transports using synchronous satellite for data relay between vehicles and ground statio

    Programming for energy monitoring/display system in multicolor lidar system research

    Get PDF
    The Z80 microprocessor based computer program that directs and controls the operation of the six channel energy monitoring/display system that is a part of the NASA Multipurpose Airborne Differential Absorption Lidar (DIAL) system is described. The program is written in the Z80 assembly language and is located on EPROM memories. All source and assembled listings of the main program, five subroutines, and two service routines along with flow charts and memory maps are included. A combinational block diagram shows the interfacing (including port addresses) between the six power sensors, displays, front panel controls, the main general purpose minicomputer, and this dedicated microcomputer system

    Non-equilibrium dynamics of an active colloidal "chucker"

    Full text link
    We report Monte Carlo simulations of the dynamics of a "chucker": a colloidal particle which emits smaller solute particles from its surface, isotropically and at a constant rate k_c. We find that the diffusion constant of the chucker increases for small k_c, as recently predicted theoretically. At large k_c the chucker diffuses more slowly due to crowding effects. We compare our simulation results to those of a "point particle" Langevin dynamics scheme in which the solute concentration field is calculated analytically, and in which hydrodynamic effects can be included albeit in an approximate way. By simulating the dragging of a chucker, we obtain an estimate of its apparent mobility coefficient which violates the fluctuation-dissipation theorem. We also characterise the probability density profile for a chucker which sediments onto a surface which either repels or absorbs the solute particles, and find that the steady state distributions are very different in the two cases. Our simulations are inspired by the biological example of exopolysaccharide-producing bacteria, as well as by recent experimental, simulation and theoretical work on phoretic colloidal "swimmers".Comment: re-submission after referee's comment

    Evaluation of lubricants for high-speed high-temperature applications Summary report

    Get PDF
    Rolling disks for evaluation of high speed, high temperature lubricant application

    The Shape of Dark Matter Haloes II. The Galactus HI Modelling & Fitting Tool

    Get PDF
    We present a new HI modelling tool called \textsc{Galactus}. The program has been designed to perform automated fits of disc-galaxy models to observations. It includes a treatment for the self-absorption of the gas. The software has been released into the public domain. We describe the design philosophy and inner workings of the program. After this, we model the face-on galaxy NGC2403, using both self-absorption and optically thin models, showing that self-absorption occurs even in face-on galaxies. It is shown that the maximum surface brightness plateaus seen in Paper I of this series are indeed signs of self-absorption. The apparent HI mass of an edge-on galaxy can be drastically lower compared to that same galaxy seen face-on. The Tully-Fisher relation is found to be relatively free from self-absorption issues.Comment: Accepted for publication by Monthly Notices RAS. Hi-res. version available at www.astro.rug.nl/~vdkruit/Petersetal-II.pd

    Station-Keeping Requirements for Constellations of Free-Flying Collectors Used for Astronomical Imaging in Space

    Full text link
    The accuracy requirements on station-keeping for constellations of free-flying collectors coupled as (future) imaging arrays in space for astrophysics applications are examined. The basic imaging element of these arrays is the two-element interferometer. Accurate knowledge of two quantities is required: the \textit{projected baseline length}, which is the distance between the two interferometer elements projected on the plane tranverse to the line of sight to the target; and the \textit{optical path difference}, which is the difference in the distances from that transverse plane to the beam combiner. ``Rules-of-thumb'' are determined for the typical accuracy required on these parameters. The requirement on the projected baseline length is a \textit{knowledge} requirement and depends on the angular size of the targets of interest; it is generally at a level of half a meter for typical stellar targets, decreasing to perhaps a few centimeters only for the widest attainable fields of view. The requirement on the optical path difference is a \textit{control} requirement and is much tighter, depending on the bandwidth of the signal; it is at a level of half a wavelength for narrow (few %) signal bands, decreasing to ≈0.2λ\approx 0.2 \lambda for the broadest bandwidths expected to be useful. Translation of these requirements into engineering requirements on station-keeping accuracy depends on the specific details of the collector constellation geometry. Several examples are provided to guide future application of the criteria presented here. Some implications for the design of such collector constellations and for the methods used to transform the information acquired into images are discussed.Comment: 13 pages, 6 figures, accepted 6/29/07 for the August 2007 issue of PAS
    • …
    corecore