12 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Structure of the Expression Site Reveals Global Diversity in MSP2 (P44) Variants in Anaplasma phagocytophilum

    No full text
    Anaplasma phagocytophilum, a recently reclassified bacteria in the order Rickettsiales, infects many different animal species and causes an emerging tick-borne disease of humans. The genome contains a large number of related genes and gene fragments encoding partial or apparently full-length outer membrane protein MSP2 (P44). Previous data using strains isolated from humans in the United States suggest that antigenic diversity results from RecF-mediated conversion of a single MSP2 (P44) expression site by partially homologous donor sequences. However, whether similar mechanisms operate in naturally infected animal species and the extent of global diversity in MSP2 (P44) are unknown. We analyzed the structure and diversity of the MSP2 (P44) expression site in strains derived from the United States and Europe and from infections of different animal species, including wildlife reservoirs. The results show that a syntenic expression site is present in all strains of A. phagocytophilum investigated. This genomic locus contained diverse MSP2 (P44) variants in all infected animals sampled, and variants also differed at different time points during infection. Although similar variants were found among different populations of U.S. origin, there was little sequence identity between U.S. strain variants (including genomic copies from a completely sequenced U.S. strain) and expression site variants infecting sheep and dogs in Norway and Sweden. Finally, the possibility that combinatorial mechanisms can generate additional diversity beyond the basic donor sequence repertoire is supported by the observation of shared sequence blocks throughout the MSP2 (P44) hypervariable region in reservoir hosts. These data suggest similar genetic mechanisms for A. phagocytophilum variation in all hosts but worldwide diversity of the MSP2 (P44) outer membrane protein

    Intermediate-Risk Meningioma: Initial Outcomes From NRG Oncology RTOG 0539

    No full text
    OBJECTIVE This is the first clinical outcomes report of NRG Oncology RTOG 0539, detailing the primary endpoint, 3-year progression-free survival (PFS), compared with a predefined historical control for intermediate-risk meningioma, and secondarily evaluating overall survival (OS), local failure, and prospectively scored adverse events (AEs). METHODS NRG Oncology RTOG 0539 was a Phase II clinical trial allocating meningioma patients to 1 of 3 prognostic groups and management strategies according to WHO grade, recurrence status, and resection extent. For the intermediate-risk group (Group 2), eligible patients had either newly diagnosed WHO Grade II meningioma that had been treated with gross-total resection (GTR; Simpson Grades I-III) or recurrent WHO Grade I meningioma with any resection extent. Pathology and imaging were centrally reviewed. Patients were treated with radiation therapy (RT), either intensity modulated (IMRT) or 3D conformal (3DCRT), 54 Gy in 30 fractions. The RT target volume was defined as the tumor bed and any nodular enhancement (e.g., in patients with recurrent WHO Grade I tumors) with a minimum 8-mm and maximum 15-mm margin, depending on tumor location and setup reproducibility of the RT method. The primary endpoint was 3-year PFS. Results were compared with historical controls (3-year PFS: 70% following GTR alone and 90% with GTR + RT). AEs were scored using NCI Common Toxicity Criteria. RESULTS Fifty-six patients enrolled in the intermediate-risk group, of whom 3 were ineligible and 1 did not receive RT. Of the 52 patients who received protocol therapy, 4 withdrew without a recurrence before 3 years leaving 48 patients evaluable for the primary endpoint, 3-year PFS, which was actuarially 93.8% (p = 0.0003). Within 3 years, 3 patients experienced events affecting PFS: 1 patient with a WHO Grade II tumor died of the disease, 1 patient with a WHO Grade II tumor had disease progression but remained alive, and 1 patient with recurrent WHO Grade I meningioma died of undetermined cause without tumor progression. The 3-year actuarial local failure rate was 4.1%, and the 3-year OS rate was 96%. After 3 years, progression occurred in 2 additional patients: 1 patient with recurrent WHO Grade I meningioma and 1 patient with WHO Grade II disease; both remain alive. Among 52 evaluable patients who received protocol treatment, 36 (69.2%) had WHO Grade II tumors and underwent GTR, and 16 (30.8%) had recurrent WHO Grade I tumors. There was no significant difference in PFS between these subgroups (p = 0.52, HR 0.56, 95% CI 0.09-3.35), validating their consolidation. Of the 52 evaluable patients, 44 (84.6%) received IMRT, and 50 (96.2%) were treated per protocol or with acceptable variation. AEs (definitely, probably, or possibly related to protocol treatment) were limited to Grade 1 or 2, with no reported Grade 3 events. CONCLUSIONS This is the first clinical outcomes report from NRG Oncology RTOG 0539. Patients with intermediaterisk meningioma treated with RT had excellent 3-year PFS, with a low rate of local failure and a low risk of AEs. These results support the use of postoperative RT for newly diagnosed gross-totally resected WHO Grade II or recurrent WHO Grade I meningioma irrespective of resection extent. They also document minimal toxicity and high rates of tumor control with IMRT. Clinical trial registration no.: NCT00895622 (clinicaltrials.gov)
    corecore