921 research outputs found

    A novel model of delamination bridging via Z-pins in composite laminates

    Get PDF
    AbstractA new micro-mechanical model is proposed for describing the bridging actions exerted by through-thickness reinforcement on delaminations in prepreg based composite materials, subjected to a mixed-mode (I–II) loading regime. The model applies to micro-fasteners in the form of brittle fibrous rods (Z-pins) inserted in the through-thickness direction of composite laminates. These are described as Euler–Bernoulli beams inserted in an elastic foundation that represents the embedding composite laminate. Equilibrium equations that relate the delamination opening/sliding displacements to the bridging forces exerted by the Z-pins on the interlaminar crack edges are derived. The Z-pin failure meso-mechanics is explained in terms of the laminate architecture and the delamination mode. The apparent fracture toughness of Z-pinned laminates is obtained from as energy dissipated by the pull out of the through-thickness reinforcement, normalised with respect to a reference area. The model is validated by means of experimental data obtained for single carbon/BMI Z-pins inserted in a quasi-isotropic laminate

    An experimental study on micro-milling of a medical grade Co-Cr-Mo alloy produced by selective laser melting

    Get PDF
    Cobalt-chromium-molybdenum (Co-Cr-Mo) alloys are very promising materials, in particular, in the biomedical field where their unique properties of biocompatibility and wear resistance can be exploited for surgery applications, prostheses, and many other medical devices. While Additive Manufacturing is a key technology in this field, micro-milling can be used for the creation of micro-scale details on the printed parts, not obtainable with Additive Manufacturing techniques. In particular, there is a lack of scientific research in the field of the fundamental material removal mechanisms involving micro-milling of Co-Cr-Mo alloys. Therefore, this paper presents a micro-milling characterization of Co-Cr-Mo samples produced by Additive Manufacturing with the Selective Laser Melting (SLM) technique. In particular, microchannels with different depths were made in order to evaluate the material behavior, including the chip formation mechanism, in micro-milling. In addition, the resulting surface roughness (Ra and Sa) and hardness were analyzed. Finally, the cutting forces were acquired and analyzed in order to ascertain the minimum uncut chip thickness for the material. The results of the characterization studies can be used as a basis for the identification of a machining window for micro-milling of biomedical grade cobalt-chromium-molybdenum (Co-Cr-Mo) alloys

    Novel parametric reduced order model for aeroengine blade dynamics

    No full text
    © 2015 Elsevier Ltd. All rights reserved.The work introduces a novel reduced order model (ROM) technique to describe the dynamic behavior of turbofan aeroengine blades. We introduce an equivalent 3D frame model to describe the coupled flexural/torsional mode shapes, with their relevant natural frequencies and associated modal masses. The frame configurations are identified through a structural identification approach based on a simulated annealing algorithm with stochastic tunneling. The cost functions are constituted by linear combinations of relative errors associated to the resonance frequencies, the individual modal assurance criteria (MAC), and on either overall static or modal masses. When static masses are considered the optimized 3D frame can represent the blade dynamic behavior with an 8% error on the MAC, a 1% error on the associated modal frequencies and a 1% error on the overall static mass. When using modal masses in the cost function the performance of the ROM is similar, but the overall error increases to 7%. The approach proposed in this paper is considerably more accurate than state-of-the-art blade ROMs based on traditional Timoshenko beams, and provides excellent accuracy at reduced computational time when compared against high fidelity FE models. A sensitivity analysis shows that the proposed model can adequately predict the global trends of the variations of the natural frequencies when lumped masses are used for mistuning analysis. The proposed ROM also follows extremely closely the sensitivity of the high fidelity finite element models when the material parameters are used in the sensitivity

    How does performance-based financing affect health workers' intrinsic motivation? A Self-Determination Theory-based mixed-methods study in Malawi.

    Get PDF
    "Intrinsic motivation crowding out", the erosion of high-quality, sustainable motivation through the introduction of financial incentives, is one of the most frequently discussed but yet little researched potential unfavorable consequence of Performance-based Financing (PBF). We used the opportunity of the introduction of PBF in Malawi to investigate whether and how PBF affected intrinsic motivation, using a mixed-methods research design theoretically grounded in Self-Determination Theory (SDT). The quantitative component served to estimate the impact of PBF on intrinsic motivation, relying on a controlled pre- and post-test design, with data collected from health workers in 23 intervention and 10 comparison facilities before (March/April 2013; n = 70) and approximately two years after (June/July 2015; n = 71) the start of the intervention. The qualitative component, relying on in-depth interviews with health workers in selected intervention facilities one (April 2014; n = 21) and two (September 2015; n = 20) years after the start of PBF, served to understand how PBF did or did not bring about change in intrinsic motivation. Specifically, it allowed us to examine how the various motivation-relevant elements and consequences of PBF impacted health workers' basic psychological needs for autonomy, competence, and relatedness, which SDT postulates as central to intrinsic motivation. Our results suggest that PBF did not affect health workers' overall intrinsic motivation levels, with the intervention having had both positive and negative effects on psychological needs satisfaction. To maximize positive PBF effects on intrinsic motivation, our results underline the potential value of explicit strategies to mitigate unintended negative impact of unavoidable design, implementation, and contextual challenges, for instance by building autonomy support activities into PBF designs

    Step-wedge cluster-randomised community-based trials: An application to the study of the impact of community health insurance

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.BACKGROUND: We describe a step-wedge cluster-randomised community-based trial which has been conducted since 2003 to accompany the implementation of a community health insurance (CHI) scheme in West Africa. The trial aims at overcoming the paucity of evidence-based information on the impact of CHI. Impact is defined in terms of changes in health service utilisation and household protection against the cost of illness. Our exclusive focus on the description and discussion of the methods is justified by the fact that the study relies on a methodology previously applied in the field of disease control, but never in the field of health financing. METHODS: First, we clarify how clusters were defined both in respect of statistical considerations and of local geographical and socio-cultural concerns. Second, we illustrate how households within clusters were sampled. Third, we expound the data collection process and the survey instruments. Finally, we outline the statistical tools to be applied to estimate the impact of CHI. CONCLUSION: We discuss all design choices both in relation to methodological considerations and to specific ethical and organisational concerns faced in the field. On the basis of the appraisal of our experience, we postulate that conducting relatively sophisticated trials (such as our step-wedge cluster-randomised community-based trial) aimed at generating sound public health evidence, is both feasible and valuable also in low income settings. Our work shows that if accurately designed in conjunction with local health authorities, such trials have the potential to generate sound scientific evidence and do not hinder, but at times even facilitate, the implementation of complex health interventions such as CHI

    Novel frame model for mistuning analysis of bladed disc systems

    Get PDF
    The work investigates the application of a novel frame model to reduce the computational cost of the mistuning analysis of bladed disc systems. A full-scale finite element (FE) model of the bladed disc is considered as benchmark. The single blade frame configuration is identified via an optimization process. The individual blades are then assembled by 3D springs, whose parameters are determined via calibration process. The dynamics of the novel beam frame assembly is also compared to those obtained from three state-of-the-art FE-based reduced order models (ROMs): a lumped parameter approach; a Timoshenko beam assembly, and component mode synthesis (CMS) based techniques with free and fixed interfaces. The development of these classical ROMs to represent the bladed disc is also addressed in detail. A methodology to perform the mistuning analysis is then proposed and implemented. A comparison of the modal properties and forced response dynamics between the aforementioned ROMs and the full-scale FE model is presented. The case study demonstrates that the beam frame assembly can predict the variations of the blade amplitude factors with results being in agreement with the full-scale FE model. The CMS based ROMs underestimate the maximum amplitude factor, while the results obtained from beam frame assembly are generally conservative. The beam frame assembly is 4 times more computationally efficient than the CMS fixed-interface approach. This study proves that the beam frame assembly can efficiently predict the mistuning behavior of bladed discs when low order modes are of interest

    Ti/Zr/O Mixed Oxides for the Catalytic Transfer Hydrogenation of Furfural to GVL in a Liquid-Phase Continuous-Flow Reactor

    Get PDF
    This work aims to develop an efficient catalyst for the cascade reaction from furfural to y-valerolactone in a liquid-phase continuous reactor. This process requires both Lewis and Brønsted acidity; hence, a bifunctional catalyst is necessary to complete the one-pot reaction. Ti/Zr/O mixed oxide-based catalysts were chosen to this end as balancing metal oxide composition allows the acidity characteristics of the overall material to be modulated. Oxides with different compositions were then synthesized using the co-precipitation method. After characterization via porosimetry and NH3-TPD, the catalyst with equimolar quantities of the two components was demonstrated to be the best one in terms of superficial area (279 m2/g) and acid site density (0.67 mmol/g). The synthesized materials were then tested using a plug flow reactor at 180 C, with a 10 min contact time. Ti/Zr/O (1:1) was demonstrated to be the most promising catalyst during the recycling tests as it allowed obtaining the highest selectivities in the desired products (about 45% in furfuryl isopropyl ether and 20% in y-valerolactone) contemporaneously with 100% furfural conversion

    Idiopathic calcium nephrolithiasis with pure calcium oxalate composition: clinical correlates of the calcium oxalate dihydrate/monohydrate (COD/COM) stone ratio

    Get PDF
    Pure calcium oxalate is the most frequent type of idiopathic kidney stone composition. Fourier transform infrared spectroscopy (FT-IR) allows to detect the ratio of calcium oxalate dihydrate (COD) and monohydrate (COM) crystals in stones, but the clinical significance of this parameter remains uncertain. The objective of this observational study was to verify the association of clinical and laboratory parameters of kidney stone disease with COD/COM ratio in a group of 465 (322 M, age 46 ± 14) patients suffering from idiopathic calcium nephrolithiasis with pure calcium oxalate stones (≥ 97%). Each participant underwent a complete clinical examination, serum chemistry, 24-h urine collection for the determination of the profile of lithogenic risk, and had stones analyzed by FT-IR. Most (62%) of the stones had a COD/COM ratio ≤ 0.25, and the urine chemistry of the corresponding patients showed a low prevalence of urinary metabolic abnormalities. With increasing COD/COM ratio intervals (0–0.25, 0.26–0.50, 0.51–0.75, 0.76–1), a significant association was observed for the number of urological procedures, serum calcium, 24-h urinary calcium excretion, prevalence of hypercalciuria and relative calcium oxalate supersaturation, and a negative trend was detected for the age of the first stone episode (all p values < 0.05). A linear regression model showed that the only parameters significantly associated with COD/COM ratio were 24-h urinary calcium excretion (standardized β = 0.464, p < 0.001) and urine pH (standardized β = 0.103, p = 0.013). In pure calcium oxalate idiopathic stones, COD/COM ratio may reflect the presence of urinary metabolic risk factors, and represent a guide for the prescription of urinary analyses
    • …
    corecore