130 research outputs found

    Barrier potential for laser written graphitic wires in diamond

    Get PDF
    Diamond substrates supporting an internal array of conductive graphitic wires inscribed by a femtosecond pulse laser, are useful for the detection of ionising radiation in a range of applications. Various parameters involved in the laser fabrication process were investigated in this paper to understand their impact on the electrical properties of the wires. The study revealed an effect, whereby the wires exhibit insulating behaviour until a barrier potential is overcome. When high enough voltages are applied, the wires display ohmic behaviour. The magnitude of the barrier potential, which in some cases exceeds 300 V, is shown to be strongly dependent on the laser fabrication parameters. Through process optimisation, the potential barrier may be minimised and effectively removed, coinciding with reduced values of the wire resistance

    Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics

    Get PDF
    Open Source PaperThis work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The attached file is the published version of the article

    Antiretroviral-naive and -treated HIV-1 patients can harbour more resistant viruses in CSF than in plasma

    Get PDF
    Objectives The neurological disorders in HIV-1-infected patients remain prevalent. The HIV-1 resistance in plasma and CSF was compared in patients with neurological disorders in a multicentre study. Methods Blood and CSF samples were collected at time of neurological disorders for 244 patients. The viral loads were >50 copies/mL in both compartments and bulk genotypic tests were realized. Results On 244 patients, 89 and 155 were antiretroviral (ARV) naive and ARV treated, respectively. In ARV-naive patients, detection of mutations in CSF and not in plasma were reported for the reverse transcriptase (RT) gene in 2/89 patients (2.2%) and for the protease gene in 1/89 patients (1.1%). In ARV-treated patients, 19/152 (12.5%) patients had HIV-1 mutations only in the CSF for the RT gene and 30/151 (19.8%) for the protease gene. Two mutations appeared statistically more prevalent in the CSF than in plasma: M41L (P = 0.0455) and T215Y (P = 0.0455). Conclusions In most cases, resistance mutations were present and similar in both studied compartments. However, in 3.4% of ARV-naive and 8.8% of ARV-treated patients, the virus was more resistant in CSF than in plasma. These results support the need for genotypic resistance testing when lumbar puncture is performe

    Hints of Universality from Inflection Point Inflation

    Get PDF
    This work aims to understand how cosmic inflation embeds into larger models of particle physics and string theory. Our work operates within a weakened version of the Landscape paradigm, wherein it is assumed that the set of possible Lagrangians is vast enough to admit the notion of a generic model. By focusing on slow-roll inflation, we examine the roles of both the scalar potential and the space of couplings which determine its precise form. In particular, we focus on the structural properties of the scalar potential, and find a surprising result: inflection point inflation emerges as an important —and under certain assumptions, dominant — possibility in the context of generic scalar potentials. We begin by a systematic coarse graining over the set of possible inflection point inflation models using V.I. Arnold’s ADE classification of singularities. Similar to du Val’s pioneering work on surface singularities, these determine structural classes for inflection point inflation which depened on a distinct number of control parameters. We consider both single and multifield inflation, and show how the various structural classes embed within each other. We also show how such control parameters influence the larger physical models in to which inflation is embedded. These techniques are then applied to both MSSM inflation and KKLT-type models of string cosmology. In the former case, we find that the scale of inflation can be entirely encoded within the super- potential of supersymmetric quantum field theories. We show how this relieves the fine-tuning required in such models by upwards of twelve orders of magnitude. Moreover, unnatural tuning between SUSY breaking and SUSY preserving sectors is eliminated without the explicit need for any hidden sector dynamics. In the later case, we discuss how structural stability vastly generalizes — and addresses — the Kallosh-Linde problem. Implications for the spectrum of SUSY breaking soft terms are then discussed, with an emphasis on how they may assist in constraining the inflationary scalar potential. We then pivot to a general discussion of the FLRW-scalar phase space, and show how inflection points induce caustics — or dynamical fixed points — amongst the space of possible trajectories. These fixed points are then used to argue that for uninformative priors on the space of couplings, the likelihood of inflection point inflation scales with the inverse cube of the number of e-foldings. We point out the geometric origin for the known ambiguity in the Liouville measure, and demonstrate of inflection point inflation ameliorates this problem. Finally we investigate the effect of the fixed point structure on the spectrum of density perturbations. We show how an anomaly in the Cosmic Mircowave Background data — low power at large scales — can be explained as a by product of the fixed point dynamics

    Examining the generalizability of research findings from archival data

    Get PDF
    This initiative examined systematically the extent to which a large set of archival research findings generalizes across contexts. We repeated the key analyses for 29 original strategic management effects in the same context (direct reproduction) as well as in 52 novel time periods and geographies; 45% of the reproductions returned results matching the original reports together with 55% of tests in different spans of years and 40% of tests in novel geographies. Some original findings were associated with multiple new tests. Reproducibility was the best predictor of generalizability—for the findings that proved directly reproducible, 84% emerged in other available time periods and 57% emerged in other geographies. Overall, only limited empirical evidence emerged for context sensitivity. In a forecasting survey, independent scientists were able to anticipate which effects would find support in tests in new samples

    Telis ME: uma versĂŁo de Telis para dispositivos mĂłveis

    Get PDF
    TCC (graduação) - Universidade Federal de Santa Catarina. Centro Tecnológico. Curso de Ciências da Computação.Télis é a uma linguagem de programação desenvolvida pela equipe do Edugraf, sob orientação do prof. Melgarejo, com ênfase na simplicidade e com o objetivo de ser de fácil aprendizagem. Hoje Télis é totalmente interpretada e roda sobre a máquina virtual Java SE. Da intenção de portar esta liguagem para dispositivos móveis (celulares), surgiu a necessidade de substituir as APIs providas pela versão completa de Java pelas APIs equivalentes da versão móvel e otimizar os recursos utilizados

    GaSb/AlGaSb

    No full text

    Bowtie-shaped nanoaperture: a modal study

    No full text
    International audienceUsing the N-order finite-difference time-domain (FDTD) method, we show that optical resonances of the bowtie nanoaperture (BNA) are due to the combination of a guided mode inside the aperture and Fabry–Perot modes along the metal thickness. The resonance of lower energy, which leads to the well-known light confinement in the gap zone, occurs at the cutoff wavelength of the fundamental guided mode. No plasmon resonance is directly involved in the generation of the light hot spot. We also define a straightforward relationship between the resonance wavelengths of the BNA and its geometrical parameters. This brings a simple tool for the optimization of the BNA design

    Barrier potential for laser written graphitic wires in diamond

    No full text
    Diamond substrates supporting an internal array of conductive graphitic wires inscribed by a femtosecond pulse laser, are useful for the detection of ionising radiation in a range of applications. Various parameters involved in the laser fabrication process were investigated in this paper to understand their impact on the electrical properties of the wires. The study revealed an effect, whereby the wires exhibit insulating behaviour until a barrier potential is overcome. When high enough voltages are applied, the wires display ohmic behaviour. The magnitude of the barrier potential, which in some cases exceeds 300 V, is shown to be strongly dependent on the laser fabrication parameters. Through process optimisation, the potential barrier may be minimised and effectively removed, coinciding with reduced values of the wire resistance
    • …
    corecore