1,812 research outputs found

    Lymphocyte Subsets and Inflammatory Cytokines of Monoclonal Gammopathy of Undetermined Significance and Multiple Myeloma

    Get PDF
    Almost all multiple myeloma (MM) cases have been demonstrated to be linked to earlier monoclonal gammopathy of undetermined significance (MGUS). Nevertheless, there are no identified characteristics in the diagnosis of MGUS that have been helpful in differentiating subjects whose cancer may progress to a malignant situation. Regarding malignancy, the role of lymphocyte subsets and cytokines at the beginning of neoplastic diseases is now incontestable. In this review, we have concentrated our attention on the equilibrium between the diverse lymphocyte subsets and the cytokine system and summarized the current state of knowledge, providing an overview of the condition of the entire system in MGUS and MM. In an age where the therapy of neoplastic monoclonal gammopathies largely relies on drugs capable of acting on the immune system (immunomodulants, immunological checkpoint inhibitors, CAR-T), detailed knowledge of the the differences existing in benign and neoplastic forms of gammopathy is the main foundation for the adequate and optimal use of new drugs

    Non-Gaussian quantum discord for Gaussian states

    Full text link
    In recent years the paradigm based on entanglement as the unique measure of quantum correlations has been challenged by the rise of new correlation concepts, such as quantum discord, able to reveal quantum correlations that are present in separable states. It is in general difficult to compute quantum discord, because it involves a minimization over all possible local measurements in a bipartition. In the realm of continuous variable (CV) systems, a Gaussian version of quantum discord has been put forward upon restricting to Gaussian measurements. It is natural to ask whether non-Gaussian measurements can lead to a stronger minimization than Gaussian ones. Here we focus on two relevant classes of two-mode Gaussian states: squeezed thermal states (STS) and mixed thermal states (MTS), and allow for a range of experimentally feasible non-Gaussian measurements, comparing the results with the case of Gaussian measurements. We provide evidence that Gaussian measurements are optimal for Gaussian states.Comment: 12 pages, 9 figures (3 appendices

    Pharmacological rescue of adult hippocampal neurogenesis in a mouse model of X-linked intellectual disability

    Get PDF
    Oligophrenin-1 (OPHN1) is a Rho GTPase activating protein whose mutations cause X-linked intellectual disability (XLID). How loss of function of Ophnl affects neuronal development is only partly understood. Here we have exploited adult hippocampal neurogenesis to dissect the steps of neuronal differentiation that are affected by Ophn1 deletion. We found that mice lacking Ophnl display a reduction in the number of newborn neurons in the dentate gyrus. A significant fraction of the Ophn1-deficient newly generated neurons failed to extend an axon towards CM, and showed an altered density of dendritic protrusions. Since Ophnl-deficient mice display overactivation of Rho-associated protein kinase (ROCK) and protein kinase A (PICA) signaling, we administered a clinically approved ROCK/PICA inhibitor (fasudil) to correct the neurogenesis defects. While administration of fasudil was not effective in rescuing axon formation, the same treatment completely restored spine density to control levels, and enhanced the long-term survival of adult-born neurons in mice lacking Ophn1. These results identify specific neurodevelopmental steps that are impacted by Ophn1 deletion, and indicate that they may be at least partially corrected by pharmacological treatment. (C) 2017 The Authors. Published by Elsevier Inc

    The Chemokine CCL2 Mediates the Seizure-enhancing Effects of Systemic Inflammation

    Get PDF
    Epilepsy is a chronic disorder characterized by spontaneous recurrent seizures. Brain inflammation is increasingly recognized as a critical factor for seizure precipitation, but the molecular mediators of such proconvulsant effects are only partly understood. The chemokine CCL2 is one of the most elevated inflammatory mediators in patients with pharmacoresistent epilepsy, but its contribution to seizure generation remains unexplored. Here, we show, for the first time, a crucial role for CCL2 and its receptor CCR2 in seizure control. We imposed a systemic inflammatory challenge via lipopolysaccharide (LPS) administration in mice with mesial temporal lobe epilepsy. We found that LPS dramatically increased seizure frequency and upregulated the expression of many inflammatory proteins, including CCL2. To test the proconvulsant role of CCL2, we administered systemically either a CCL2 transcription inhibitor (bindarit) or a selective antagonist of the CCR2 receptor (RS102895). We found that interference with CCL2 signaling potently suppressed LPS-induced seizures. Intracerebral administration of anti-CCL2 antibodies also abrogated LPS-mediated seizure enhancement in chronically epileptic animals. Our results reveal that CCL2 is a key mediator in the molecular pathways that link peripheral inflammation with neuronal hyperexcitability

    Multi-Photon Nanosurgery in Live Brain

    Get PDF
    In the last few years two-photon microscopy has been used to perform in vivo high spatial resolution imaging of neurons, glial cells and vascular structures in the intact neocortex. Recently, in parallel to its applications in imaging, multi-photon absorption has been used as a tool for the selective disruption of neural processes and blood vessels in living animals. In this review we present some basic features of multi-photon nanosurgery and we illustrate the advantages offered by this novel methodology in neuroscience research. We show how the spatial localization of multi-photon excitation can be exploited to perform selective lesions on cortical neurons in living mice expressing fluorescent proteins. This methodology is applied to disrupt a single neuron without causing any visible collateral damage to the surrounding structures. The spatial precision of this method allows to dissect single processes as well as individual dendritic spines, preserving the structural integrity of the main neuronal arbor. The same approach can be used to breach the blood-brain barrier through a targeted photo-disruption of blood vessels walls. We show how the vascular system can be perturbed through laser ablation leading toward two different models of stroke: intravascular clot and extravasation. Following the temporal evolution of the injured system (either a neuron or a blood vessel) through time lapse in vivo imaging, the physiological response of the target structure and the rearrangement of the surrounding area can be characterized. Multi-photon nanosurgery in live brain represents a useful tool to produce different models of neurodegenerative disease

    Towards a comprehensive understanding of brain machinery by correlative microscopy.

    Get PDF
    Unraveling the complexity of brain structure and function is the biggest challenge of contemporary science. Due to their flexibility, optical techniques are the key to exploring this intricate network. However, a single imaging technique can reveal only a small part of this machinery due to its inherent multilevel organization. To obtain a more comprehensive view of brain functionality, complementary approaches have been combined. For instance, brain activity was monitored simultaneously on different spatiotemporal scales with functional magnetic resonance imaging and calcium imaging. On the other hand, dynamic information on the structural plasticity of neuronal networks has been contextualized in a wider framework combining two-photon and light-sheet microscopy. Finally, synaptic features have been revealed on previously in vivo imaged samples by correlative light-electron microscopy. Although these approaches have revealed important features of brain machinery, they provided small bridges between specific spatiotemporal scales, lacking an omni-comprehensive view. In this perspective, we briefly review the state of the art of correlative techniques and propose a wider methodological framework fusing multiple levels of brain investigation

    Linear amplification and quantum cloning for non-Gaussian continuous variables

    Get PDF
    We investigate phase-insensitive linear amplification at the quantum limit for single- and two-mode states and show that there exists a broad class of non-Gaussian states whose nonclassicality survives even at an arbitrarily large gain. We identify the corresponding observable nonclassical effects and find that they include, remarkably, two-mode entanglement. The implications of our results for quantum cloning outside the Gaussian regime are also addressed.Comment: published version with reference updat
    • …
    corecore