2 research outputs found

    EPTRI Belgian Joint Research Unit : harmonisation and concertation of paediatric research in Belgium to ensure better and safer healthcare for children

    Get PDF
    We want to put the excellent translational paediatric research in Belgium on the ESFRI national roadmap in order to participate in the European Paediatric Translational Research Infrastructure (EPTRI) project. Therefore, we are in the preparatory phase to form a Belgian national EPTRI Joint Research Unit (JRU). Academic research organisations and hospitals from both regions, Flanders and Wallonia are currently involved. The Belgian JRU partners will gather complementary scientific and technological competencies in the different EPTRI thematic research platforms: 1. Paediatric medicines discovery: with different types of “in vitro” paediatric models, placental and umbilical cord and 3D organoid cell cultures from paediatric samples and juvenile animal models such as the rabbit BPD model, juvenile Göttingen minipig, juvenile conventional pig model and developmental zebrafish model; 2. Paediatric biomarkers and biosamples: identification, characterisation and validation of the biomarkers used as prognostic tools, safety markers and diagnostic tools in paediatric diseases; 3. Developmental pharmacology: including PK (bioavaibility/bioequivalence) studies, Population PKPD analysis and PK/PD modelling; 4. Paediatric medicines formulations and medical devices: including regulatory knowledge of paediatric medical devices. The partners will ensure a strong liaison with other RI’s such as the BBMRI-ERIC for paediatric biobanking and the IMI conect4children network paediatric clinical trials. We propose an integrated paediatric research system that links together EPTRI Belgium with landmark RIs, conect4children and the many paediatric clinical research networks and institutions that provide services to paediatric research. This integrated system can provide: expertise, experienced facilities and practical support for pre-clinical and clinical paediatric research in Belgium and Europe. Sharing understanding of patients’ needs and concerted efforts in paediatric research will further enhance the health of children

    Tuning Chocolate Flavor through Development of Thermotolerant Saccharomyces cerevisiae Starter Cultures with Increased Acetate Ester Production

    No full text
    Microbial starter cultures have extensively been used to enhance the consistency and efficiency of industrial fermentations. Despite the advantages of such controlled fermentations, the fermentation involved in the production of chocolate is still a spontaneous process that relies on the natural microbiota at cocoa farms. However, recent studies indicate that certain thermotolerant Saccharomyces cerevisiae cultures can be used as starter cultures for cocoa pulp fermentation. In this study, we investigate the potential of specifically developed starter cultures to modulate chocolate aroma. Specifically, we developed several new S. cerevisiae hybrids that combine thermotolerance and efficient cocoa pulp fermentation with a high production of volatile flavor-active esters. In addition, we investigated the potential of two strains of two non-Saccharomyces species that produce very large amounts of fruity esters (Pichia kluyveri and Cyberlindnera fabianii) to modulate chocolate aroma. Gas chromatography-mass spectrometry (GC-MS) analysis of the cocoa liquor revealed an increased concentration of various flavor-active esters and a decrease in spoilage-related off-flavors in batches inoculated with S. cerevisiae starter cultures and, to a lesser extent, in batches inoculated with P. kluyveri and Cyb. fabianii. Additionally, GC-MS analysis of chocolate samples revealed that while most short-chain esters evaporated during conching, longer and more-fat-soluble ethyl and acetate esters, such as ethyl octanoate, phenylethyl acetate, ethyl phenylacetate, ethyl decanoate, and ethyl dodecanoate, remained almost unaffected. Sensory analysis by an expert panel confirmed significant differences in the aromas of chocolates produced with different starter cultures. Together, these results show that the selection of different yeast cultures opens novel avenues for modulating chocolate flavor.status: publishe
    corecore